
DS Lab Help Index
Product Support

What is DS Lab?
How do you Use DS Lab?
Who is DS Lab For?
Some Basic Concepts
Description of the Work Environment
The Script Language
Functions and Instructions
How to...
Common Questions and Answers

Product Support
DS Lab Help Index

Decision Support Laboratory
"The Visual Spreadsheet"

Registered licensees of DS Lab are entitled to 90 days of free technical support starting from the
purchase date. Registered users of DS Lab Pro are entitled to lifetime technical support for the most
current release of the software.

For Mexico, USA, Canada:

Technical support is available M-F 9:00 am to 5:00 pm Eastern Time at +1 (203) 861-1833, on
CompuServe our ID is 71552,1645 or you can write to us.

DS Group, Inc.
474 North Street
Greenwich, CT 06830-3449 (USA)

For other countries:

Technical support is available M-F 9:00 am to 6:00 pm Italy Time at +39 (2) 26111981, on CompuServe
our ID is 100113,2272 or you can write to us.

DS Group Srl
Viale Monza, 27
20125 Milano (ITALY)

We are sorry that we cannot afford to provide technical support for users of the working model but if you
have questions about DS Lab contact us.

What is DS Lab?

Decision Support Laboratory is a visual spreadsheet. It provides an easier and faster way to build, edit
and explain a spreadsheet model. The basic building block of traditional spreadsheets is a cell. The basic
building block of DS Lab is an element. With DS Lab, you define your model the same way you would
think through a problem, using symbols for elements such as Inputs, Variables, Constant, Series and
Tables to define the data you work with.

DS Lab graphically shows the logic of the model by letting the user represent and manipulate the data
with symbols connected by arrows. The symbols (elements) display the data one step at a time, while
leaving all of the data accessible in an instant with the click of a mouse. The arrows display the
relationship between the elements. DS Lab easily manages hundreds of elements over thousands of
steps. Unlike traditional spread sheets that hide the logic of the model behind columns and rows of data,
DS Lab makes it easy to understand how the numbers are generated, easy to manage large arrays of
numbers, and easy to edit the logic of the model.

DS Lab simplifies and speeds building formulas through the use of an English language "script". A script
can be as simple as a spreadsheet type formula or as complex as a program. DS Lab provides nearly 200
predefined mathematical, financial, time, goal-seeking and logical functions which are available with a
click of the mouse. Each function or keyword is shown with a description. When selected, a function is
inserted into the script including its argument syntax, in plain English. Each of the connected elements is
also displayed, thus most of the script writing is a matter of pointing and clicking. Unlike traditional
spreadsheets there is no risk of including the wrong cell or range reference in a formula, nor of missing
one that should be included.

The logic of the model is automatically applied to all the steps of the model. Time is the parameter most
commonly defined for these steps, so DS Lab provides a built in calendar to define days, weeks, months
or years. Steps may be defined as something other than time, such as geography or product type by
simply creating a list of items. The software will then automatically generate the values for each step of
the user-defined parameters. With DS Lab there is no risk of incorrectly copying formulas across a range
of cells.

The results can be printed in WYSIWYG graphical decision flow images or in tabular format. Using a
Copy Paste or Paste Link command, they can also be automatically exported to any Windows program
for further manipulation, publishing or graphing. Integration with Excel is further automated allowing for
automatic export with the click of a single button. The plain English scripts can also be printed for clear
and automatic documentation of the model. A much simpler process than trying to read lists of formulas
with cell references and obscure function.

DS Lab is designed to function stand-alone and provide functionality not found in spreadsheets, but works
best in conjunction with Windows spreadsheets (Excel in particular). DS Lab provides six different ways to
export data (one as simple as one click of the mouse) and supports DDE links, both inbound and
outbound, to any other Windows application which supports DDE. DS lab is designed to provide a
complex modelling environment which then makes use of the strengths of spreadsheets and graphing
packages for charting and publishing functions.

How do you Use DS Lab?

DS Lab allows you to draw flow-chart type models instead of having to define them by means of complex
relationships between spreadsheet cells.

DS Lab splits the simulation process into four distinct parts:

- the graphical building of the model;

- its mathematical definition;

- the actual simulation;

- reporting the results.

DS Lab is a visual model editor. That is, the elements of the model are visually represented on a page
and the logical and mathematical links between them are shown by connecting arrows. This flow-chart
approach allows a clear overview of the model, making it easy to work on. In a spreadsheet, the model is
hidden behind the cells. DS Lab puts it in the foreground. This characteristic makes DS Lab the ideal tool
to help you lay out the logic of a situation. Changing the layout is a simple drag and drop process.

After drawing the model, it must be defined mathematically. Each graphical symbol represents an element
in a calculation, together with the functions, instructions and operators of the DS Lab working
environment.

DS Lab provides calendar, mathematical, trigonometric, statistical, bond, short term note, equity risk and
value, portfolio, inventory, financial, cash flow, logical, DDE (Dynamic Data Exchange) and programing
functions. All of the functions are readily accessible with a click and are displayed with a description. In
addition, the on-line help fully documents each function (its use and error messages) and provides an
example. DS Lab will also return context sensitive error messages which very quickly and clearly
identifies the problem in a script.

Once the model has been drawn and mathematically defined, you can start the simulation. In this phase
you will again appreciate how easy DS Lab is to use. Simply by using a scroll bar, you can move back
and forth through the steps and instantly see the situation at any particular point in the simulation. It is
equally easy to go back and change the initial data, or even the logic of the calculations, by adding new
elements to the original problem.

The results of simulations can easily be transferred to any other Windows application, particularly to an
Excel spreadsheet, where they can be formatted and printed out as reports. Similarly, it is easy to create
charts to show the changes over time of the main elements in the model. Simply select the elements to be
shown and, at the touch of a button, DS Lab automatically sends to Excel all the commands needed to
build the chart. The result is a standard Excel chart, so all the tools provided by Excel are available.

Thus DS Lab is a new type of product in the world of computing. It is not intended to replace the
spreadsheet, but to complement it. In fact, though both products can work separately, they are used to
their best advantage together. DS Lab is software for the development and use of Decision Support
Systems. It can be used as a CASE tool for the spreadsheet, or as a spreadsheet with graphic symbols in
the place of cells.

Who is DS Lab For?

DS Lab can be used in project management, financial analysis, strategic or operative planning whenever
it is necessary to prepare budgets, cash flows or any kind of forecasting model. In short, DS Lab can be
used in any situation where you want to represent a system by means of a model that is, a series of
linked elements and evaluate the changes in the model over time, showing the results in graphic form or
as numerical reports. Its use, then, is not restricted just to the business world. DS Lab is suitable for
problem-solving in all kinds of areas, including engineering, biological, physical and social simulations.

Users fall into into two major categories:
1. Traditional spreadsheets users who find the DS Lab graphical approach to modelling faster and easier

to use when defining and presenting their models. For these users DS Lab was created as an adjunct
to the spreadsheet. There are four significant advantages in using DS Lab over traditional
spreadsheet models:

A. The graphical representation of the model makes it much faster and easier for the user to develop
and modify the logic and flow of the model.

- The user can always see the logic of the model and focus on the flow and relationships of the data.

- The user is not overwhelmed by the vast number of columns and rows of data found in spreadsheets.

- All functions and elements are always available with the click of a mouse.

- Function syntax is built into the script functions so the user does not have to remember it or refer to a
manual.

- Element names and functions are in plain English rather than cell references or undeciferable
abreviations.

- Changes in element names, relationships and values are propagated automatically throughout the
model.

- All the data is available through on screen reports with a cick of the mouse.

B. The graphical representation of the model makes it much easier for those who did not develop it to see
and understand the logic and flow of the model. Those who need to read the results of the model can
plainly see the relationship between the elements and are not simply confronted with tables of data.

C. The DS Lab method of managing time sequences in particular (or other unit of measure for the second
dimension) is easier to manage than spreadsheets. It provides a more intuitive way of seeing the results
of a model change over time, geography, product type or what ever the second dimension might be.
2. The second group includes users who require a sophisticated graphical tool for defining complex

simulations involving many elements and many iterations (steps) and find spreadsheets inadequate.

DS Lab Pro was designed to meet the needs of this second category of user. Its goal is to assist the
professional who needs to develop, simulate and demonstrate large and complex decision or process
models in the financial, logistics, engineering, scientific, public administration and educational fields.

Examples of use by current customers include:

- A bank uses it for calculating complex bond yields.

- A petrochemical company uses it to optimize its tanker's scheduled departures.

- Several industrial companies use it for developing complex budgets.

- A carburettor manufacturer uses it to model the performance of its carburettors.

- A regional government uses it to model its budget.

- A business school uses it in its Decision Sciences courses to develop simulation analyses.

- A financial institution uses it to estimate municipal revenues and prepare offers on bonds.

Examples of applications for which DS Lab can be used are:

Investors
- Securities and options
pricing and yield
projections
- Investment choices
- Equities risk evaluation

Materials Analysts
- Material flow
simulations
- Optimum
shipping/delivery/
processing scheduling

Bankers
- Business planning
- Complex loan
amortization projections

Scientists & Engineers
- Simulating chemical
reactions
- Fluid dynamics
- Mechanical dynamics
- Component stress
modeling
- Statistical modelling

Financial & Business Analysts
- Business planning
- Actuarial Analysis
- Inventory planning

Social Scientists
- Quantitative behavioral
models
- Econometric models

DS Lab makes modelling and modifying these complex simulations easier than using spreadsheets, and
graphically displays the models to those who need to understand the results.

Some Basic Concepts

Before getting into the details of DS Lab, we will consider some concepts which are essential for first time
users. DS Lab is theoretically based on Dynamic Systems Analysis. It is not necessary for a DS Lab user
to be familiar with this theory in order to use the product, as the symbols and calculating methods used
are simple enough for anyone to grasp.

In the following pages, nine basic concepts are introduced:

Models
Variables
Series
Tables
Constants
Inputs
Shadows
Links between models
DDE

Models

Models are simplified representations of real systems. The operations of a companys sales division can,
for example, be represented by a model. A model can also be considered mathematically as a set of
formulas describing the relationships between the elements involved. An example of an element is Sales
Forecast, which in turn is a function of a series of other elements such as Number of Agents, Sales
Points, and so on.

In DS Lab, models are defined in two ways:

- Graphically: by placing on a graphics page symbols representing the elements and linking them with
arrows representing the causal relationships between the elements; and

- Mathematically: by associating with each element a formula or numeric value which defines it.

DS Lab models can contain five types of elements:

Variables
Series
Tables
Constants
Inputs

Shadows

A shadow element is a duplicate of some other element in the model. Any type of element, including
another shadow, can be duplicated. There is a live link between the primary element and its shadow so
that any changes (i.e. value, name, color) to either will be reflected in the other. The shadow element will
have the same shape as the primary but with a double outline. For example, a shadow of a variable
element will appear as two concentric circles.

Suppose the Sales and Marketing department builds two models representing the components of
advertising costs and agent costs. When a model to represent total marketing costs is created on the
same page, these two sub-models would become part of the main one. The Advertising Costs and Agent
Costs elements can be duplicated and their shadow elements used as components of Total Marketing
Costs.

Links Between Models

It is possible to make one model influence the input, output or execution of another. This can be done in
three ways:

- An incoming link reads the value of a variable from another model during the simulation.

- An outgoing link sends data to another model during the simulation.

- Executing a sub-model causes one model to execute another.

These operations are carried out using the following functions in the script language: Request, Poke and
Execute.

DDE

DDE (Dynamic Data Exchange) is the mechanism by which Windows applications can exchange data
automatically (Copy and Paste operations are a manual method of obtaining the same result).

Three pieces of information are needed by DDE Links:

- Application: the name of the application with which to establish the link, for example DS Lab, Excel,
etc.

- Topic: the name of the document or the applications work unit: DS Lab models, spreadsheet work
sheets or word processor documents are Topics. A special kind of Topic is System, which represents the
application itself.

- Item: identifies the desired data. In DS Lab it will be the name of an element (with or without step
notation), in a spreadsheet it would be a cell, etc.

There are two types of DDE links:

- A Hot Link is a link that is always active. This means that changes in the data at the sending end will
be reflected simultaneously at the receiving end. The Paste Link command found in many Windows
applications is a common example of a hot link.

- A Cold Link is a permanent link that allows data to be sent or received by an application. The link is
updated only on demand.

DS Lab supports both kinds of links when sending data, but when receiving, accepts only cold links. This
choice was based on the typical use of DS Lab, which consists of a data acquisition phase followed by
the What-If analysis. Since the analysis is based on factual data that remains unchanged until the next
acquisition phase, there is no need for it to be automatically updated.

Description of the Work Environment

DS Lab presents a Work Environment in which a Models, Texts or Reports can be built.

The basic functions of this window are the same as in any Windows application. The name of the program
is shown at the center of the title bar. The windows Control Menu box is in the upper left corner. This
gives access to a menu from which you can Restore, Move, Size, Minimize, Maximize or Close the
window and Switch To other active applications, leaving DS Lab running in the background. The usual
Maximize and Minimize buttons (up and down arrows) are in the upper right-hand corner. If you have
any queries about these functions, refer to your Microsoft Windows Users Guide for a fuller explanation.

The Menus, the Toolbars, the Edit Bar and the actual Work Area with the Model, Report and Text
Windows are specific to DS Lab.
Menus
The Toolbars
The Edit Bar
Popup Menus
DS Lab Menus in Model Mode
DS Lab Menus in Text Mode
DS Lab Menus in Report Mode
Editing the Scripts of the Variables
Rules for Building DS Lab Models

Menus

Three different work environments exist in DS Lab:

- Model mode
- Text mode
- Report mode.
The menus are opened by moving the pointer to the desired item and clicking with the left mouse button,
or by holding down the ALT key while pressing the underlined letter in the name of the required menu. The
following sections describe in detail the function of each of the menu commands.

The Toolbars
DS Lab can have two toolbars: one just below the menu bar (Horizontal Toolbar), the other at the left
edge of the screen (Vertical Toolbar). They contain tools representing the elements and the main
commands of DS Lab in Model mode. The arrangement of the buttons on the toolbar can be customized.
To move a button, position the pointer over it and, while holding down the right mouse button, drag the
button to its new position.

Both toolbars are optional. The Workspace... command in the Options menu allows you to define your
personal work environment. In the following sections, the various tools are described in their default
positions.

The Horizontal Toolbar
The Vertical Toolbar

The Horizontal Toolbar

Starting from the left, the first four buttons correspond to the main commands of the standard Windows
File menu:

New tool

Open tool

Save tool

Print tool.

To their right is the drop-down list box of the Simulation Steps, showing the Current Step of the model;
clicking on the left and right arrows adjacent to it moves you to earlier or later steps.

Next comes a small colored circle called the Traffic Light; it can show red or green. Immediately after a
simulation the Traffic Light is green, indicating that the values shown on the screen have been updated. If
anything (such as editing a script or the values of a series) is done that could make the values on the
screen invalid, the Traffic Light turns red and has an X through it as a reminder that a recalculation
should be done to obtain updated data.

Moving to the right again there is the Zones
The four outer rectangles each represent a zone of the model. To associate a zone with one of these,
select the elements to be included, then click with the right mouse button (or SHIFT + left button) on one of
the four rectangles. From now on, clicking on that rectangle will move you to the zone of the model
associated with it.

The central rectangle allows you to define zones and assign names to them. Thereafter, clicking on this
rectangle will give access to a dialog box in which you can choose which pre-defined zone to move to.

The remaining buttons each correspond to a menu command that will be described more fully later. Here
we give only a brief summary:

The Selection Arrow tool is used to select one or more elements, or to move them after they have been
selected. It corresponds to the Selection Arrow command in the Edit menu.

The Variable, Constant, Series, Input and Table tools represent the corresponding elements that can be
used in DS Lab. These each correspond to a command of the same name in the Model menu.

The Shadow tool creates a copy of an element. It too corresponds to a command in the Model menu.

The Connect tool is used to connect the elements (Connect in the Model menu).

The Comment tool is used to place comments in the model (Comment in the Model menu).

Further to the right are four Zoom tools, used to give different views of the model. The first two
correspond to Zoom Out and Zoom In; the third shows the model at the default enlargement (Normal
View tool), and the fourth at maximum reduction, giving an overview of the whole model (All Pages tool).

The Vertical Toolbar

The Export to Excel tool allows integration with the Excel spreadsheet and corresponds to the Export to
Excel command in the Simulation menu.

The Report tool is used to show the results of a DS Lab simulation in tabular form (Report in the
Simulation menu).

The Values for Current Step tool shows the values of the variables and series at the current step (View
Values for Current Step in the View menu).

The Text tool corresponds to the Open Text command in the File menu.

The Recalculate tool has the same function as the Recalculate command in the Simulation menu.

The Calculate tool corresponds to the Calculate command in the Simulation menu.

The Number Format and Color tools represent commands in the Options menu.

The Find tool corresponds to the Find... command in the View menu.

The Simulation Parameters tool corresponds to the Parameters... command in the Simulation menu.

The DDE tool corresponds to the Update DDE Links... command in the Simulation menu.

The First Step tool allows you to go immediately to the First Step of the simulation.

The Set Print Size tool corresponds to the Set Print Size command in the Model menu.

The Print Size tool corresponds to the Print Size command in the View menu.

The remaining four tools correspond to four commands in the Model menu:

Edit Constants..., Edit Series..., Edit Starting Values... and Edit Past Steps... .

The Edit Bar

The Edit Bar is located immediately below the Horizontal Toolbar. The name of the currently selected
element appears on it. The name of the element can be modified simply by typing in the new name, which
will immediately appear on the edit bar.

When only a part of the name needs to be changed, select the element and then move the mouse pointer
on to the edit bar highlighting the part to be changed. You may also go into edit mode with the short-cut
key F2. To make the name change permanent, press ENTER; otherwise the changes will be lost when you
select another element.

The Edit Bar can be removed from the workspace by selecting Workspace... from the Options menu,
then clicking the Edit Bar check box to remove the X.

Popup Menus

Pressing the right mouse button from within a DS Lab model window gives access to two reduced size,
context sensitive menus containing the commands most commonly used in the particular situation from
which they are accessed.

When one or more elements are selected, the menu is the following:

which correspond to the following commands in Model mode:

Cut command in the Edit menu

Copy command in the Edit menu

Copy Link Total command in the Edit menu

Copy Link Current command in the Edit menu

Delete command in the Edit menu

Export to Excel command in the Simulation menu

Report command in the Simulation menu

Number Format... command in the Options menu

Color... command in the Options menu

If no elements are currently selected, the menu is:

which correspond to the following commands in Model mode:

Paste command in the Edit menu

Parameters... command in the Simulation menu

Calculate command in the Simulation menu

Recalculate command in the Simulation menu

Update DDE Links command in the Simulation menu

Workspace... command in the Options menu

Model Setup... command in the Options menu

By using the right mouse button and the Toolbars, it is rarely necessary to access the classic pull-down
menus.

DS Lab Menus in Model Mode

When working with models, the menu bar offers the following choices:
The File menu
The Edit menu
The Options Menu
The View Menu
The Model Menu
The Simulation Menu
The Window menu
The Excel! menu
The Help menu

The File Menu
New...
Open...
Close
Close All
Save
Save As...
Open Text
Print
Print Setup...
Page Setup...
Last Four Models Used
Exit

New...

This command allows you to create a new file. When New... is chosen, a dialog box appears in which you
are asked whether you want to start a new model or a text file. The default is Model; when you click the
OK button, DS Lab will present you with an empty window in which to build a new model. Several model
and text files can be open at the same time: practically no operational limits exist apart from the structural
ones of Windows.

By default, new model and text files assume the names MODEL and TEXT respectively, plus a serial
number indicating how many new files were opened in the same work session. Model files have the
extension .LAB identifying them as DS Lab files.

The Text option enables you to write texts, which can run to many pages, without having to leave DS Lab
to run a separate text editor. Text files are in ASCII format, which can be read by any word processor or
text editor, and are saved with the extension .TXT.

The New tool is a short cut for this command.

Open...

This command is used to open files previously saved to disk. The command works in much the same way
as in any other Windows program. When you choose this command, a dialog box appears which allows
you to look for the file you wish to open. The desired file can be loaded by double-clicking on it or by
selecting it and then choosing the OK button.

To open a text file, change the extension in the File Name box to .TXT, either by replacing *.LAB with
*.TXT or by selecting Text Files from the List Files of Type box. To exit this command without opening a
file, choose the Cancel button.

The Open... tool is a short cut for this command.

Close

Clicking on this command closes the current model. If the model has been modified, DS Lab will notify
you and ask if you wish to save the changes.

Close All

This command is self-explanatory: it closes all open windows, after asking you whether you want to save
any models or texts that have been changed.

After all windows have been closed, the only menus available are File, which offers you the choice of
starting a new model, opening an existing one or exiting from DS Lab to return to Windows, and Help.

Save

Like the corresponding command in other Windows programs, this command allows you to save to disk a
file that has been changed. The first time a model or text is saved, you are asked to give it a name.

There are two short cuts for this command: the SHIFT F12 key and the Save tool .

Save As...

This is similar to the preceding menu command, the only difference being that a dialog box appears in
which you are asked for a new name. This is useful when, for example, you want to open and edit a
model while keeping a copy of the file as it was before the changes. To do this, use the Save As...
command to save the modified version under a new name.

Open Text

This command is used to open the Text File associated with the model. An ideal use of this feature is to
write a description of a model as it is being built, which is associated with the model and is always
available when working on it. The text is saved in a separate file with the same name as the currently
active model but a .TXT extension.

The Text tool is a short cut for this command.

Print

When you choose Print, a cascading menu appears with the following options:

- Graphic
- Script
The Graphic option is to print the model in graphic form. The dialog box which appears after selecting
this option allows you to set the number of copies and the range of pages to print. The page breaks are
indicated on the screen by a pagination grid and can be previewed with the View All Pages command.
The pages are numbered from left to right and from top to bottom.

The Script print option calls up a dialog box containing a list of all the variables in the model, allowing you
to choose the scripts to be printed. After completing the input fields, choose the OK button to start printing
or the Cancel button to abandon the operation.

The Print tool is a short cut for this command.

Print Setup...

Choosing this command from the File menu allows you to define standard parameters for the printer to be
used. In particular, you can define:

- the printer connected to the system;

- the type of paper feed;

- the paper size

and, when using a laser or similar printer:

- the amount of printer memory;

- the print orientation: portrait (vertical) or landscape (horizontal);

- the graphics resolution: (75, 150 or 300 dots per inch);

- any additional font cartridges fitted to the printer.

Page Setup...

This command allows you to define the items which will appear with the printed model. By clicking on the
appropriate check box, you can decide whether to include a border, the name of the model, the step in the
simulation and/or the page number in the printed document. (Note: an option is enabled when an X
appears in the check box, disabled when it is empty.) The left, right, top and bottom page margins can
also be defined.

Last Four Models Used

After the Page Setup... command on the menu and before the Exit command, the names of the last four
models used in DS Lab are shown. They can be opened directly by clicking on a name, bypassing the
Open... command.

Exit

This command exits from DS Lab. If any open model or text files have been modified, you will be asked if
they should be saved before exiting.

The Edit Menu

The commands of the Edit menu are discussed briefly below. Since the commands are common to most
Windows programs, refer to your Microsoft Windows Users Guide for more detailed explanations.

Cut
Copy
Copy Link Total
Copy Link Current
Paste
Delete
Selection Arrow

Cut

This command allows the user to cut the selected element(s) or text object(s) from the current model and
transfer it (them) automatically to the Windows clipboard. (For further information on the Clipboard, refer
to your Windows Users Guide.) It will be helpful to keep in mind the following:

- In DS Lab, several models can be open at the same time, so that the Cut and Paste commands can
be used to transfer sections of models from one to another.

- The Clipboard can also be used to transfer data to a Windows spreadsheet or word processor.

- More generally, anything that can be seen on the screen can be transferred via the Clipboard to other
Windows applications.

When working in Model mode, selecting one or more elements and then choosing this command causes
DS Lab to transfer to the Clipboard the names of the selected elements and their values for each step of
the simulation.

Short Cut: This command may be used without accessing the menu simply by pressing SHIFT+DEL. It may
also be accessed from the popup menu which appears on clicking the right mouse button with
one or more elements selected.

Copy

This is similar to Cut, except that with Copy, the elements or text transferred to the Clipboard are also left
on the page from which they have been copied. Cut transfers them to the clipboard, deleting them from
the model, whereas Copy transfers them to the Clipboard but leaves the model intact.

When working in Model mode, selecting one or more elements and then choosing this command causes
DS Lab to transfer to the Clipboard the names of the selected elements and their values for each step of
the simulation.

Short Cut: This command may be used without accessing the menu simply by pressing CTRL+INS. It may
also be accessed from the popup menu which appears on clicking the right mouse button with
one or more elements selected.

Copy Link Total

The Copy Link Total command allows data to be exported in such a way that it will be updated
automatically. Copy Link Total sets up a link for each step of the model: that is, if the model covers 24
steps, there will be 24 linked values for every element for which Copy Link Total has been invoked.

The procedure is identical to that of the Cut and Copy commands:
1. Select the elements to be linked to the other application.
2. From the Edit menu, choose Copy Link Total.
3. Bring up the destination application.
4. Select the insertion point for the data.
5. From the Edit menu, choose Paste.

Since each Windows application uses its own link format, you must choose the format in which the link is
to be written before invoking this command. This is done with the Copy Link Format command in the
Options menu. The default format is that used by Excel.

In practice, these commands are useful if, for example, you want to create report documents with another
Windows application and have them automatically updated every time the data in the original model
changes.

Short Cut: This command may be used without accessing the menu by pressing SHIFT+F2. It may
also be accessed from the popup menu which appears on clicking the right mouse button with
one or more elements selected.

Copy Link Current

This command is similar to Copy Link Total. The only difference is in the number of links set up; Copy
Link Current sets up only one link per element, and that link is for the value at the current step; Copy
Link Total creates a link at each step for each element.

To clarify the difference between Copy Link Current and Copy Link Total, let us consider an example.
Suppose you want to transfer data for two elements from a model lasting 12 steps so that it will be
updated automatically. If the current step in the model is the 12th, Copy Link Current creates a link for
only two values (those of the two elements at the last step), while Copy Link Total creates a link for 24
values (2 elements * 12 simulation steps).

Short Cut: This command may be used without accessing the menu by pressing SHIFT+F3. It may
also be accessed from the popup menu which appears on clicking the right mouse button with
one or more elements selected.

Paste

This command transfers the contents of the Clipboard to the active window. It is used after something has
been cut or copied onto the clipboard. To copy one or more elements from one model to another:
1. Select the elements to copy.
2. From the Edit menu, choose Copy (or press CTRL+INS).
3. Select the destination model (if it is not already open, open it now).
4. From the Edit menu, choose Paste.

If a part of the model is copied and pasted to the same model, the new elements take the same names as
the originals with a 2 added at the end.

Short Cut: This command may be used without accessing the menu simply by pressing SHIFT+INS. It
may also be accessed from the popup menu which appears on clicking the right mouse button
when no elements are selected.

Delete

This command deletes a selection. To delete something, first select it and then choose this command. For
safety, DS Lab asks for confirmation every time Delete is used.

Short Cut: This command may be used without accessing the menu simply by pressing DEL. It may
also be accessed from the popup menu which appears on clicking the right mouse button with
one or more elements selected.

Selection Arrow

Choosing this command is equivalent to clicking on the Selection Arrow tool .

If the Selection Arrow tool is already active, a check mark appears next to the Selection Arrow
command in the Edit menu.

With the Selection Arrow tool active, it is possible to select:

- a single element by moving the pointer to it and clicking the left mouse button;

- all of the elements in a rectangular area of the model by placing the pointer at one corner of the
desired area, pressing the left mouse button and dragging to the opposite corner before releasing the
mouse button. All the elements in the selected area will be shown with a broken outline, showing they are
currently selected;

- several elements even if they are not adjacent, by holding down the SHIFT key while clicking on them
one at a time.

The Options Menu

The first part of this menu allows you to customize some of DS Labs tools.

Workspace...
Model Setup...
Copy Link Format...
Number Format...
Color...
Password...

Workspace...

This command may also be accessed from the popup menu which appears on clicking the right mouse
button with no elements selected. It opens a dialog box where you can choose the components of your
personal work environment. Each of these is active when the corresponding check box is selected (an X
appears in it).

Excel

This part of the Workspace... dialog box is used to tell DS Lab which version of Microsoft Excel is
installed on the system. This information is essential to the correct transfer of data from DS Lab to Excel.

- The Create Chart option, when enabled, causes Excel to automatically create a chart each time data
is exported to the worksheet.

- An X in the Excel Menu check box will add the Excel! menu to the menu bar. This single item menu,
when chosen, activates the Excel worksheet, launching the application if it is not already running.

Toolbar

The Toolbar section of this dialog box allows you to choose whether to display the Horizontal and/or
Vertical toolbars. Choosing the Default button will cause all the tools to return to their default positions.

Edit Bar

The Edit Bar check box controls whether or not the Edit Bar is displayed.

Default Settings for Copy

The options in this section allow you to customize the form in which data will be exported to another

application, usually a spreadsheet, by means of the Copy and Paste procedures.

Model Setup...

This command may also be accessed from the popup menu which appears on clicking the right mouse
button with no elements selected. It opens a dialog box where you can choose the components that will
characterize your model window. Each of these is active when the corresponding check box is selected
(when an X appears in it).

Show Values

If this option is selected, the values of the elements for the current step or the error values returned by the
program during calculation are shown below the names of the elements.

Update Values during Simulation

When enabled, this option updates the value of each element on screen at each step of the simulation.
Disabling this option will display the calculated values only at the final step. With large, complex models,
disabling this option will speed up the simulation, since the screen is no longer redrawn at each step.

Show Page Breaks

When this option is selected, a pagination grid is superimposed on the model window, indicating where
the page breaks will occur when the model is printed. This option is useful when fixing the zoom level for
the printed document before printing.

Automatic Calculation

Like a spreadsheet, DS Lab offers the option of recalculating the values of the formulas every time data is
changed. With very large models, it may be better to disable automatic calculation in order to speed up
maintenance operations on the model.

Activate DDE Functions

This option is the equivalent of the preceding one for DDE links with other applications. If it is selected,
the links will be updated every time the models calculations require it (including each time a variable script

is modified). It has the drawback that, if the other application is not active, error messages will appear. It
is, therefore, advisable to leave this option disabled during model building and maintenance,
remembering to enable it before carrying out any simulation in which DDE functions are needed to obtain
reliable results.

Grid

This option, similar to that found in most drawing programs, allows you to define two parameters,
Horizontal (x) and Vertical (y), which determine the size of the smallest distance in pixels by which
elements can be moved on the two axes. The grid thus obtained is not shown on the screen.

For example, if the two values are set to 50 and 25 respectively, the elements in the model will be spaced
at intervals of 50 pixels (or multiples of 50) horizontally and 25 pixels (or multiples of 25) vertically.

This option is useful when you wish to improve the appearance of models by aligning elements in
horizontal or vertical rows.

Copy Link Format...

This item is used to select the format of the data to be sent by the Copy Link Total and Copy Link
Current commands. Select the appropriate format from the Format drop-down list box, or type in a new
format and then choose the Add button. The default format is that used by Excel.

Number Format...

This command allows you to define the format in which the numerical values of the elements will be
displayed. Select the desired element and then click on this command to access the dialog box in which
you can choose the most appropriate format. A standard format for all new elements can be set by
selecting the Set as Default check box.

The short cut for this command is the Number Format tool . It may also be accessed
from the popup menu which appears on clicking the right mouse button with one or more elements
selected.

Color...

This command allows you to choose the color in which the names and values of the selected elements
will be displayed. Select the element to be colored, then choose this command to access the dialog box of
available colors. A standard color for new elements can be set by selecting the Set as Default check box.

The short cut for this command is the Color tool . It may also be accessed from the
popup menu which appears on clicking the right mouse button with one or more elements selected.

Password...

This command is used to assign a password (no longer than 8 characters) to a model. Every time an
attempt is made to open the model, DS Lab will ask for the password, thus restricting access to the model
and its data by unauthorized persons.

After the password has been entered, you will be asked to type it again. If the two versions correspond,
the password is attached to the model.

Note: The password can be modified only after the model has been opened. If you subsequently forget it,
the model will be irrevocably lost!

The View Menu

The View menu is made up of three distinct parts. The first duplicates the four buttons used to give
different views of the model, described in The Horizontal Toolbar. The second contains a command to
redraw the model, and the third enables you to move around the model and to find elements with
particular characteristics.

All Pages
Normal
Zoom In
Zoom Out
Print Size
Redraw
Find...
Next
Zones...
Undefined Variables
Run-Time Errors
View Values for Current Step
Search...

All Pages

This command allows an overview of the whole model. The short cut for this command is the All Pages

tool .

This viewing mode is useful for a preview before printing.

Normal

This command activates the default level of magnification of the model. The short cut for this command is

the Normal View tool .

Zoom In

This command gives an enlarged the view of the model. It can be used after Zoom Out to return step by

step to the original viewing mode. The short cut for this command is the Zoom In tool .

Zoom Out

This command is the opposite of Zoom In: it gives a reduced view of the model. Choosing it repeatedly

gives an increasingly reduced-scale view. The short cut for this command is the Zoom Out tool .

It should be noted that what is shown on screen at the lowest levels of magnification may not correspond
exactly with what will be printed: names of variables or comments which appear superimposed on screen
may not be so when printed, depending on the print size chosen and the printer used.

Print Size

This command returns you instantly to the zoom level set for printing out the model by means of the Set
Print Size command in the Model menu. It provides a form of print preview, allowing you to see at a
glance what elements will be printed together on the same page.

The short cut for this command is the Print Size tool .

Redraw

This command redraws the model on the screen. It can be used when, for any reason, the model is not
displayed correctly. Though the time required to redraw depends on the complexity of the model, it should
only take a few seconds even for a complex model.

Find...

This command is used to search for an element in a large model. A dialog box appears in which you are
asked to type in the name of the element to be found or select it from a list of all the elements in the
model. You can also choose whether to Match Whole Element Name, that is, the name entered
corresponds exactly to that of the element being searched for, or if it represents only a part of it. The Next
button allows you to search for the next occurrence of the element.

There are two short cuts for the Find... command: the F3 key and the Find tool

.

If a shadow element is selected, pressing F3 and then Return causes DS Lab to look for the primary
element where the shadow is defined.

Next

This command duplicates the function of the Next button in the dialog box of the Find... command. The
short cut to find the next occurrence of the element selected is the F4 key.

Zones...

This menu item gives access to the dialog box listing user-defined areas of the model. In simple terms, it
is possible to define a name for a certain portion or zone of the model. There is no limit to the number of
zones that may be defined. Once the zone has been defined, using this command will enable you to go
directly to a desired area of the model without using the scroll bars.

This dialog box can also be accessed by clicking on the central rectangle of the Zones tool , or by
pressing the F5 key.

Undefined Variables

This command is used to locate all variables that have an incorrectly defined or undefined script. Its short
cut key is F6.

Run-Time Errors

This command is used to find all variables that have given run-time errors, for example, division by zero
or the logarithm of a negative number. Its short cut key is F7.

View Values for Current Step

This command displays the values of the models variables and series for the current step (shown in the
drop-down list box on the toolbar). The values are shown in either a two-column or a two-row table,
depending on the selection made under Default settings for Copy in the Workspace Setup dialog box
in the Options menu. The display contains the names of the elements and their current values.

The values can be copied (and thus exported to other Windows applications), but not edited, because this
could destroy the validity of the values (for example by arbitrarily changing the current value of a variable
which is the result of a calculation).

The short cut for this command is the Values for Current Step tool .

Search...

This command is used to find, one after another, all the elements of the same type. On choosing this
command, a cascading menu appears from which you choose the type of element to search for.

The Model Menu

This is undoubtedly the most important menu of DS Lab. It consists of three sections.

- The first part includes the five types of elements that can be used in DS Lab models (also represented
on the Toolbar).

- The second part allows the values of the elements in the model to be changed without selecting them
one by one. This point will be elaborated upon later.

- The third part presents two commands which allow you to convert an element to a different type and to
define the size of the printed document in relation to that shown on the screen.

Variable
Constant
Series
Input
Table
Comment
Connect
Shadow
Edit Variables
Edit Constants
Edit Series
Edit Inputs
Edit Tables
Edit Starting Values
Edit Past Steps
Convert
Set Print Size

Variable

This command is used to insert a variable in the model and is equivalent to the Variable tool . A
variable is an element whose value is defined by calculations within a DS Lab model. A script a kind of
program written in the DS Lab language is associated with each variable.

- To insert a Variable in the model:
1. From the Model menu, choose Variable (or click theVariable tool, or press ALT+F6).
2. Position the mouse pointer where the variable is to be inserted.
3. Click the mouse button.

Double-clicking on the variable accesses a dialog box where the variable is defined by means of its script.

This box shows:

- the name of the element;

- the elements connected to it which are used in its defining formula (Connected Elements);

- a list of the Functions and Instructions that can be used in the script;

- some of the operators that can be used (+, -, * , =, etc.);

- a check box for Self-Reference;

- a box where a Starting Value can be inserted if required;

- the Script edit box;

- an Always Calculate check box;

- an edit box and two buttons (Paste Link and Update) for DDE;

- the OK, Cancel and Edit Script buttons.

Self-Reference, and consequently Starting Value, will be briefly discussed here, whereas the others are
discussed later in the manual.

Self-Reference enables the variable to be used as an input to itself. (Obviously, only values from
previous steps can be used). This is useful in defining variables which express a running total, where the
current value is equal to that at the previous step, plus the increase or decrease that has taken place: for
example, a Cash Balance, whose in and out flows are Income and Expenditure.

Although by default the step immediately prior to the current one is taken as the input value, a different

interval can be specified by using step notation.

The Starting Value is the value given to the variable for step 0 and is required to calculate the first step
when Self-Reference is enabled.

Constant

This command is used to insert a constant in the model and is equivalent to the Constant tool . A
Constant is an element with a single value that remains unchanged throughout the simulation.

- To insert a Constant in the model:
1. From the Model menu, choose Constant (or click the Constant tool, or press ALT+F7).
2. Move the mouse pointer to where the element is to be inserted.
3. Click the mouse button.

Double-clicking on the element accesses a dialog-box in which you can specify the constants name and
either its value or a DDE link which will import a value from another model or application.

Series

This command is used to insert a series in the model and is equivalent to the Series tool . A series is
an element that represents a series of values, one value for each step of the simulation. It can use either
data from outside the model (e.g. the firms financial records) using DDE links or data listed in the model.

- To insert a Series in the model:
1. From the Model menu, choose Series (or click the Series tool, or press ALT+F8).
2. Position the mouse pointer where the element is to be inserted.
3. Click the mouse button.

Double-clicking on a Series in the model opens a dialog box in which its numerical values are defined.

The dialog box contains:

- an edit box containing the name of the series, where it may be changed if desired;

- an edit box headed Value, where the value for the step highlighted in the list box below is edited;

- a list box showing the steps of the simulation and the value assumed by the series for each of them;

- a Paste button, which inserts the data in the Clipboard as the value for the step highlighted in the list
box (equivalent to SHIFT+INS);

- a Change button, which assigns the value currently in the Value edit box to the step highlighted in the
list box (the same effect is produced by pressing the and keys);

- a Fill Down check box. If this is enabled before clicking the Change button, the value in the Value edit
box is assigned to all the remaining steps to the end of the simulation;

- an edit box and two buttons (Paste Link and Update) for incoming DDE links;

- the usual OK and Cancel buttons.

Input

This command is used to insert an input in the model and is equivalent to the Input tool .

An input is an element whose value remains constant throughout a simulation, but will normally be
changed between one simulation and another.

- To insert an Input in the model:
1. From the Model menu, choose Input (or click the Input tool, or press ALT+F9).
2. Position the mouse pointer where the input is to be inserted.
3. Click the mouse button.

Double-clicking on the element accesses a dialog box in which you can specify the inputs name and
either an initial value or a DDE link which will import a value from another model or application.

Its value in subsequent simulations can be changed through the dialog box that appears every time the
Recalculate command is given. This element makes it easy to define parameters in the model whose
values are to be changed at each recalculation.

Table

This command is used to insert a table in the model and is equivalent to the Table tool .

It is used to insert a table in the model. Tables allow you to access a number of data arrays, organized in
a matrix, by means of a single element.

- To insert a Table in the model:
1. From the Model menu, choose Table (or click the Table tool, or press ALT+F10).
2. Position the mouse pointer where the element is to be inserted.
3. Click the mouse button.

To access the table and enter data in it, double-click on the element. This opens a dialog box in which you
can specify the name of the table and any DDE links.

Click on the Table button to enter spreadsheet mode (cells, edit bar, etc.).

To refer to the data contained in a table in the script of a variable, enter the name of the table followed by
RC notation for the selected cells.

Comment

This command is used to insert a comment in the model and is equivalent to the Comment tool

. It is used to add notes to the model.

- To insert a Comment in the model:
1. From the Model menu, choose Comment (or click the Comment tool, or press ALT+F11).
2. Position the mouse pointer where the comment is to be inserted.
3. Click the mouse button.

A comment, unlike a Text describing the model, is shown on screen (and printed) as part of the model. It
enables the user to add titles, notes, etc. to the model.

The text created using this tool is an object. When selected, the text frame is a dotted rectangle. Since the
text is an object, it can be moved and placed anywhere in the model by dragging it with the mouse.

Double-clicking on a text frame opens a dialog box where you can edit the text, establish DDE links and
set the justification (left, right or center), just as in most text editors.

Connect

This command is equivalent to theConnect tool. Its function is to connect two
elements.

- To make a connection between two elements:
1. From the Model menu, choose Connect (or click the Connect tool, or press ALT+F12).
2. Position the mouse pointer to the first element (the start point).
3. Press the left mouse button and keep it pressed while dragging the pointer to the second element

(destination).
4. Release the mouse button.

Only a variable may be the destination of a connection. Any other element (Series, Constant, Input or
Table) by definition has a value that does not depend on other elements in the model, while Shadows
represent elements defined elsewhere in the model.

Shadow

This command is used to insert a shadow in the model and is equivalent to the Shadow tool

.

A shadow element is not an element in its own right, but is a copy of an element (variable, constant,
series, table, input, comment or another shadow) already defined in the model.
- To insert a Shadow in the model:
1. From the Model menu, choose Shadow (or click the Shadow tool, or press ALT+F5).
2. Point to the element you want to duplicate.
3. Click the mouse button.
4. Position the mouse pointer where you want the Shadow.
5. Click the mouse button again.

DS Lab does not distinguish a Shadow from its primary element. Any changes in the primary are reflected
in the Shadow and vice versa. The model can contain more than one Shadow of the same element and,
since you can create a Shadow of another Shadow, it is not necessary to copy the original every time.

Note: Keeping the SHIFT key pressed during the above process will cause the primary element to be
exchanged with its Shadow. This means the primary will be moved to the new position and the
Shadow will remain where the primary was. This is useful when building a model top-down. After
building the basic model, you can subsequently decide to analyze the composition of a particular
element in a sub-model.

Edit Variables

This command gives access to a list box for all the variables in a model without having to select them one
by one on the screen. This is particularly useful in a large model when it becomes necessary to edit the
script of a number of variables.

When this command is chosen, a dialog box appears containing a list of all the variables in the model.
Once you have selected a variable, click on the Edit button to open a dialog box in which the variables
script and other characteristics can be edited. After making the necessary modifications, choose the OK
button. You are then returned to the list box where you can select another variable or choose the Close
button to return to the model.

Edit Constants

This command facilitates the insertion of values for the models constants by making it possible to review
all the constants in one table. They are presented in two columns; the first, containing the names of the
constants, and the second, the value assigned to each.

Of course, the value of each constant can be edited individually by double-clicking on it to open its dialog
box; however, the Edit Constants command provides a faster means to modifying several constant
elements.

The values for the Current Step are updated on exiting from this dialog box, unles the Automatic
Calculation option in the Model Setup dialog box is disabled.

The short cut for this command is the Edit Constants tool .

Edit Series

This command facilitates the insertion of values for the Series elements contained in the model by making
it possible to access all such elements without selecting each one individually.They are presented in
tabular form, with the names of the series in the rows and the simulation steps in the columns. At the row-
column intersection, the value for the corresponding step may be inserted or modified.

It is also possible to modify any part of a series in its own dialog box. However, this method allows you to
modify only one series at a time, so it is more time consuming when editing many elements, and it does
not allow you to compare all the series in the model.

The values for the Current Step are updated on exiting from this dialog box, unles the Automatic
Calculation option in the Model setup dialog box is disabled.

The short cut for this command is the Edit Series tool .

Edit Inputs

This command permits you to see or modify the inputs contained in the model.

As with other similar commands, clicking on it gives access to a table containing two columns, one with
the names of the inputs, the other with the corresponding values. This allows you to change the values of
the inputs without using the Recalculate command.

The values for the Current Step are updated on exiting from this dialog box, unles the Automatic
Calculation option in the Model setup dialog box is disabled.

Edit Tables

With this command you can edit all the table elements in the model without locating them in the model.
This capability is particularly useful in a large model when it is necessary to change the table elements
defined in it. Choosing this command opens a list box containing all the table elements in the model.
Select the table element to be modified by clicking on it, then click the Edit button (or press ENTER). Make
the required changes in the dialog box presented, then click the OK button. You will be returned to the list
box where you can, if you wish, choose another table element to edit.

Edit Starting Values

This command allows you to input starting values (those for step 0) for the variables and series in the
model.

The values for the Current Step are updated on exiting from this dialog box, unles the Automatic
Calculation option in the Model setup dialog box is disabled.

The values are entered in a simple table:

This command, which is most commonly used to enter starting values manually for the models variables,
can also be used in other ways, such as importing values from other models or other Windows
applications by means of the Copy and Paste commands.

The short cut for this command is the Edit Starting Values tool .

Edit Past Steps

This command allows you to input values for steps which are not simulated but have values that are
already known. They are entered by means of a simple table.

The values for the Current Step are updated on exiting from this dialog box, unles the Automatic
Calculation option in the Model setup dialog box is disabled.

The short cut for this command is the Edit Past Steps tool .

Convert

This function is used to convert an element in the model into a different type of element. Sometimes you
may notice too late that you have used a series when the values are constant, or an input where a
variable was required, etc.

In such cases this command allows you to change the element without having to delete it, which would
cause the loss of all its connections with other elements.

In certain types of conversion, however (e.g. from a series to a constant), some data loss is inevitable. DS
Lab will warn you when a conversion will result in lost data.

Set Print Size

This command prepares the document for printing. DS Lab has a pagination reference grid which can be
shown superimposed on the model by choosing the Model setup... command from the Options menu
and enabling the Show Page Breaks check box.

The page size is defined by:

- The paper size selected;

- The margin settings;

- The orientation of the printer page;

- This menu command.

Clicking on the Zoom In and Zoom Out buttons changes the magnification level, showing a smaller or
larger portion of the model on the screen. When you think you have obtained a satisfactory size for
printing, choose Set Print Size . This command tells DS Lab that this is the scale at which the model is to
be printed and that page breaks are to be set according to the current positioning of the page break lines.

To obtain a print preview, use the View All Pages command (View menu). This gives you a whole model
print preview, typical of the Windows environment. If necessary, you can then select a different zoom level
and reset the print size. In essence, you are able to change the way the model will be printed simply by
using the zoom commands. You may then finalize the layout by moving any elements which lie on page
breaks.

The short cut for this command is the Set Print Size tool .

The Simulation Menu

This is the core menu of the DS Lab. The functions contained in it control the actual simulation and What
if... analysis once the model has been built. The basic concept behind DS Lab is that all the calculations
defined in the model are repeated for each step of the simulation. The functions contained in this menu
define the framework in which these repetitions will take place.

Parameters...
Calculate
Recalculate
Update DDE Links...
Export to Excel
Report
Link with Excel...

Parameters...

Choosing this command from the Simulation menu or the popup menu (or clicking the Simulation

Parameters tool) opens a dialog box in which the following basic parameters are
defined:

Step Unit

The Step unit is the unit in which the intervals between successive steps of the simulation will be
measured. You can choose from Day, Week, Month or Year. You can also choose a generic Unit for
cases not specifically provided. For example, a person following the evolution of the giraffe from its first
appearance on the earth to the present time might want to use millennium steps.

In this manual we emphasize simulations over time, since most applications of DS Lab fall in this
category, but of course models can also be built which use all kinds of other Step units. For this reason
the User Defined option allows you to define your own step unit. This option is particularly useful for
parallel simulations (e.g. different models of cars in a model to calculate running costs). When using the
User Defined step unit, you must give a name to each step. Click the User Defined Unit button and
enter the names.

Multiple Unit

Multiples of the selected step unit may be used in place of single units. For example, selecting Month as
the step unit and 3 as the multiple means that the next step after January 1993 will be April 1993.

First Step

This establishes the first step in the simulation. For example, if the first step is the first month of 1993, just
enter January 1993.

Number of Steps

Enter in this field the number of steps to be included in the simulation.

Last Step

DS Lab calculates this, using the formula:

Last Step = First Step + Number of Steps.

Current Step

DS Lab automatically increments this every time it executes the calculations for a step. The user may
change it at any time. To move back and forth through the simulation steps, you can usually use the
Current Step box on the toolbar: the right arrow will advance to later steps, the left arrow returns to
earlier steps.

Simulation Start

This marks the step at which the program starts to calculate values according to the scripts of the

variables. It can be different from the First Step, as we shall see in the following example.

Suppose that in July a business sets up a model to predict sales for the year. First Step would be set to
January and Last Step to December. Since the sales through June are known, we set Simulation Start
to July. This way, for some of the variables, the program will consider data up to June as given and will
calculate the values from July onwards. This is only true, however, for those variables whose Always
Calculate check box is not selected. The known values of these variables are entered with the Edit Past
Steps command in the Model menu.

Simulation Length

This sets the number of steps for which values are to be calculated during the simulation.

The values for the Current Step are updated on exiting from this dialog box, unles the Automatic
Calculation option in the Model setup dialog box is disabled.

To analyze monthly values over a two-year period (January 1993-December 1994), the following values
must be assigned:

Step unit = Month

Multiple Unit = 1

First Step = January 1993

Number of Steps = 24

Last Step = December 1994 (calculated by the program).

To actually calculate values for the first half of 1993 only, enter the following values:

Current Step = January 1993

Simulation Start = January 1993

Simulation Length = 6

Now start the calculation with the Calculate command. The simulation will run through June 1993. At this
point, having seen the results, it is possible to edit the script of a variable. Once the changes are made,
reset the Current Step value in the dialog box to January 1993. The simulation many now be repeated
from the beginning.

Calculate

This command is used to execute a simulation for the number of steps defined in Simulation Length (or
to the Last Step if that is reached sooner), starting from the Current Step . What differentiates this
command from Recalculate is that the simulation does not start again from the First Step, allowing it to
be continued after pausing. Also the Inputs are not presented for redefinition.

This command can also be accessed by clicking the Calculate tool , or from the
popup menu (click the right mouse button with no elements selected). Or press the short cut key F9.

Recalculate

This command executes a simulation for the number of steps defined in Simulation Length, starting from
the First Step . Unlike the preceding command, Calculate, the simulation is run from the beginning,
regardless of what the Current Step is. Also, if there are any Input elements defined in the model, a dialog
box will appear where their values may be confirmed or changed.

If the value shown is correct, click on the OK button to confirm the current value. The simulation starts
after the OK button is clicked.

While the simulation is running, the drop-down list box on the toolbar shows the steps as they are
calculated. After the simulation has ended, you can review the results by moving back and forth through
the steps: just click on the left and right arrows next to the Current Step drop-down list box, or open the
list to select a specific step.

The time taken to execute calculations is directly proportional to:

- the number of steps,

- the number of variables,

- the complexity of the models structure, and

- the complexity of the scripts defining the variables.

However, DS Lab is very fast, and even for complex models calculation will rarely take more than a few
minutes. The simulation may be interrupted at any time by pressing ESC.

This command can also be accessed by clicking the Recalculate tool , or from the
popup menu (click the right mouse button with no elements selected). Or press the short cut key F10.

Update DDE Links...

This command enables you to update in one pass all data import links established in the variables scripts.

Choosing this command calls up a dialog box with a list of all DDE links established with the Paste Link
procedure. You may update All, None, or only those selected by clicking on their description. After
selecting the links to be updated, click on the Update button to import the new data into DS Lab.

The values for the Current Step are updated on exiting from this dialog box, unles the Automatic
Calculation option in the Model setup dialog box is disabled.

The short cut for this command is the DDE tool . It may also be accessed from the
popup menu which appears on clicking the right mouse button when no elements are selected.

Export to Excel

This command makes it extremely simple to transfer the results of a simulation to an Excel spreadsheet.
Just select the variables whose values you want to export and then choose this command (also available

by clicking the right mouse button), or click the Export to Excel tool or press the F11
short cut key. This will create a new spreadsheet with the names of the variables listed in the rows and
the simulation steps in the columns.

If the Chart option in Workspace Setup was enabled, this command will also produce a chart in the
default style. If the simulation is repeated with different parameters and/or formulas for the variables, the
above operations must be repeated to export the new output data to Excel.

Note: For this command to function correctly, the version of Excel installed must be specified with the
Workspace... command. For the transfer to be automatic, Excel must be either already running or
in a directory included in the PATH defined in your systems AUTOEXEC.BAT file.

Report

DS Lab also allows you to display the results of a simulation in spreadsheet format through its own
internal spreadsheet mode, without running an external application. Select the desired elements of the
model and then choose this command (also available by clicking the right mouse button), or click the

Report tool or press the F12 short cut key. With the current version of DS Lab, it is
not possible to save reports created in this way.

Link with Excel...

This is another important feature of the program. DS Lab can automatically export data from simulations
to an Excel spreadsheet in a previously defined format, without going through the DDE functions which
can link most Windows applications.

DS Lab provides two modes of data exchange which work exclusively with Excel. The first, and simplest,
is described in Export to Excel. It must be repeated each time you want to export data to Excel.

The second mode is much more sophisticated. It creates a permanent link with Excel. You must specify
beforehand the name of the worksheet to be used, the variables to be exported and their positions on the
worksheet. The two applications are then actively linked all the time, so that the Excel spreadsheet is
automatically updated with the results of each simulation carried out in DS Lab.

Choose the Link with Excel command from the Simulation menu and specify the following data in the
dialog box that appears:

- The worksheet you intend to send data to. It must be chosen among those currently open.

- The elements of the model to be exported.

The dialog box shows two lists. The Available Elements list box contains all the elements which can be
selected (all those in the model). The Selected Elements list box shows those elements which have
been chosen for export to Excel. Between these two list boxes there are three buttons:

- Insert allows you to insert an element into the list of selected variables. Select the name of the
element you want to export, then click on Insert. The element will be added to the Selected Elements
list, above the highlighted element.

- Append allows you to add an element to the list of selected variables. Select the name of the element
you want to export, then click on Append. The element will be added to the Selected Elements list,
below the highlighted element.

- Remove an element from the Selected Elements list. Select the unwanted element then click on the
Remove button.

In this dialog box you can also specify the area of the worksheet to be used. In the Row and Column
boxes at the bottom right you enter the coordinates of the top left cell of the area in which to place the
exported values.

After each simulation, the Link with Excel will send the results of the simulation to spreadsheets that
have been prepared in advance as reports. The permanent link provides instantaneous updating of the
reports.

The Window Menu

This menu contains two sections. The first offers commands affecting the placement of the open windows.

Cascade
Tile
Arrange Icons

The second part of the Window menu contains a list of all the models, text files and tables currently open.
To go from one window to another, just click on the name of the file you wish to use.

Cascade

This is the standard mode for DS Lab, as for other Windows programs. Windows containing models are
opened one on top of another. The user can resize them by dragging their frames to the desired height
and width. To go from one model to another, click on any visible part of its window or select it from the list
of currently open files in the lower section of the Window menu.

The short cut key for this command is SHIFT+F5.

Tile

This command arranges all the open windows side by side on the screen, allowing you to see them at the
same time. Obviously the size of each window, and consequently the proportion of its contents displayed,
diminishes as the number of windows increases. This mode is thus not the most suitable while working on
a model, but can be useful when for example copying sections from one model to another, or for
comparing two closely related models.

The short cut key for this command is SHIFT+F4.

Arrange Icons

This command arranges the icons in a row along the bottom of the screen. Windows can be reduced to
icons by clicking on the down arrow in the top right corner of each window frame. This is different from
closing the window. It is more like parking it out of the way while you do something else. This can be very
useful, for example, when you have a lot of models open and you want to look at two of them side by side
in Tiled mode. First, reduce all the other windows to icons; second, choose the Tile command to place the
open windows side by side; and third, choose the Arrange Icons command to put the icons in a row.

The Excel! Menu

The presence of this menu is optional; it is enabled by the Excel Menu option in the Workspace...
command of the Options menu.

The menu consists of the single command Excel!. Clicking on it takes you straight into Excel if it is in a
directory included in the PATH statement of your computers AUTOEXEC.BAT file.

The Help Menu

This menu gives access to on-line help. It contains four commands:

Contents
How to Use Help
Product Support
About...

Contents

This command gives access to information about using DS Lab. Choose this command to access the list
of contents, then select the subject you want to know about.

How to Use Help

Gives information on how to use Help.

Product Support

Gives information on how to contact technical support for DS Lab.

About...

Contains information on DS Lab products, including:

- the name of the program;

- the version number (remember to specify this when asking for upgrades);

- copyright information on this program, developed by DS Group s.r.l. and Prisma 2.0 s.r.l.

DS Lab Menus in Text Mode

When a text window is active, the menu bar changes. The commands for the management of models are
replaced with specific text management commands. Thus when working with texts, the menu bar offers
the following choices:

File, Window, Excel! and Help contain the same commands as in Model mode.

The following sections describe the commands in the remaining menus which are different from those
available in Model mode.

The Edit Menu
The Find Menu

The Edit Menu
Word Wrap
Select All

Select All

This command selects the entire text. The other commands in the Edit menu (Cut, Copy, Delete) can
then be applied to the whole text.

Word Wrap

As its name implies, this command, when activated, causes words to wrap to the next line.

The Find Menu

This menu is unique to Text mode and consists of three commands:

- Find...
- Next
- Previous
The Find... command accesses a dialog box in which you are asked to specify the word or phrase to be
searched for in the text. Subsequently, the Next and Previous commands find the same word or phrase
further ahead and further back in the text.

The short cuts for the Next and Previous commands are F3 and F4.

DS Lab Menus in Report Mode

When working with reports, there are only the following menus:

The File menu allows the same operations as in Model mode, with the exception that the Save and Print
commands are absent. This is because DS Lab reports are provisional worksheets for evaluation of
results only and cannot be saved to disk or printed.

The Edit menu has only one command Copy which allows results to be copied to the Clipboard for
transfer to other Windows applications such as spreadsheets and word processors.

Window, Excel! and Help contain the same commands as in Model mode.

Editing the Scripts of the Variables

Once a model has been built graphically, it must be defined mathematically by entering the formulas and
expressions defining the variables. For our purposes, these formulas and expressions will be called the
script of a variable. A script can range from a simple formula to a complex program: the degree of
complexity depends entirely on the user.

The Script Editing Dialog Box
Full Screen Editing Mode

The Script Editing Dialog Box

The Script Editing dialog box is accessed by double-clicking on the symbol of a variable. It is here that the
selected variable is given its mathematical definition.

The Connected Elements list box contains the names of all the elements connected to the variable
currently being defined. The script of a variable may reference only the names of elements connected to it
by an arrow. If at this stage it becomes obvious that other elements are needed in the script, you must
return to the model and connect the additional elements. On returning to the Script Editing dialog box, you
will find that the new names have been added to the list of elements available for selection.

The script defining the variable is composed in the Script text box. Choosing an element from the
Connected Elements list box causes it to be copied into the Script box. The name can also be typed
directly into the text box, but the first method is preferable as it eliminates the risk of typing errors.

The Functions/Instructions list box shows the functions and instructions which can be used in defining
the script. Scrolling through this list should make it obvious that DS Lab is equipped to deal with even the
most complex formula. There are numerous mathematical, financial and statistical functions; logical
operators such as And and Or; and DS Lab script language programming instructions.

At the top right is an edit box containing the name of the variable, where it can be changed if desired.

Immediately below this is a numerical input box where a Starting Value is entered if required, and the
Self-Reference check box. If this is selected, the variable can refer to itself in the script (that is, include a
previous value of itself as an input to its formula). If Self-Reference is enabled, DS Lab automatically
includes the name of the variable whose script is being edited in the Connected Elements list box.

On the right is a small calculator-style keypad for the benefit of those who prefer to use the mouse all the
time, rather than pressing the corresponding keys on the keyboard.

Further down is the Always Calculate check box.

At the bottom there is the DDE text box and two buttons, Paste Link and Update, for operations relating
to the input of data through DDE.

When script editing is complete, choose OK to return to the model.

Full Screen Editing Mode

The Script Editing dialog box also contains a button marked Edit Script. Clicking this button expands the
Script text box to full-screen mode for the convenience of those users who need to write sizable programs
defining a variable.

The full screen Script Editor has three menus:

- Edit provides the usual Cut, Copy and Paste functions, which can be used not only within a script, but
also to copy text from the script of one variable and paste it into another.

- Lists calls up the two list boxes containing the Connected Elements and the Functions/Instructions
available for inclusion in the script.

- Test! consists of a single command which instantly checks the syntactic validity of the script that has
been entered.

Double-clicking the control-menu box returns you to the standard Script Editing dialog box.

Rules for Building DS Lab Models

Building a model includes both setting it out graphically and defining it mathematically. During both of
these stages, DS Lab carries out checks on its formal correctness.

Checks by the Graphic Model Editor
Checks by the Script Editor
Error Values

Checks by the Graphic Model Editor

- Only variables can have in-coming connections. Series, constants, inputs and tables are not defined
from within the model. They can therefore only have out-going connections.

- Shadow variables cannot have in-coming connections, only out-going connections. The input
connections must be defined in the primary variable.

- A model can contain more than one shadow of the same element, but only one of them may be
connected to the same variable.

Checks by the Script Editor

The script editor carries out two kinds of checks:

- syntactical checks on the script;

- circular reference checks.

The first reviews the script of a variable to ensure that the syntax of the DS Lab language is respected.
This language is fully described in The Script Language, which contains details of the syntax and usage
of all functions and instructions.

The second type of check, similar to that found in spreadsheet applications, prevents the insertion of
undefined variables.

For example, the following scripts for the two variables VAR_A and VAR_B constitute an undefined
system:

VAR_A = VAR_B + 10
VAR_B = 1000 - VAR_A

It is obvious that the value of VAR_A depends on that of VAR_B and vice versa.
DS Lab will accept the first formula, but will return a circular reference error message when the second is
entered. The above example is very simple, but the principle remains valid for systems (models)
containing a large number of elements.

It is important to observe, however, that the script of a variable may include a reference to a previous
step. In the above example, if the script of VAR_B had been VAR_B = 1000-VAR_A[-1], there would have
been no circular reference error.

Error Values

A variable will assume an error value in the following situations:

- The script is incorrectly defined;

- The calculation does not produce a meaningful value;

- Changes have taken place in the model which require a new simulation.

There are three possible types of error value:

Syntax Errors in the Script
Run-Time Errors
Use of a Variable with an Error Value (Cascade Error)

Syntax Errors in the Script

A question mark [?] below the name of a variable means that the script has not been defined or is
syntactically incorrect.

Repeatedly pressing the function key F6 will cause DS Lab to display, one after another, all variables that
return this error value.

Run-Time Errors

[#ADDDAY] Error in the internal_date argument of the AddDay function.

[#ADDMONTH] Error in the internal_date argument of the AddMonth function.

[#ADDWEEK] Error in the internal_date argument of the AddWeek function.

[#ADDYEAR] Error in the internal_date argument of the AddYear function.

[#AFV/n] Error in anAdvanced Future Value Functions (AFV). The number identifies the type
of error.

[#APV/n] Error in an Advanced Future Value Functions (AFV). The number identifies the type
of error.

[#ARCCOS/-1,1] Arc-cosine of a number less than -1 or greater than 1.

[#ARCSIN/-1,1] Arcsine of a number less than -1 or greater than 1.

[#ARRAY/RC] Invalid array notation referring to a table.

[#ARRAY] Invalid array notation referring to a variable or series.

[#BOND/n] Error in a Bond Management function. The number identifies the type of error.

[#DATE] Error in a date passed to the Date function.

[#DAY] Error in the internal_date argument of the Day function.

[#DAYWEEK] Error in the internal_date argument of the DayWeek function.

[#DAYYEAR] Error in the internal_date argument of the DayYear function.

[#DDEREQUEST] Error in importing data from another Windows application with the DDERequest
function.

[#DIV/0] Division by zero.

[#DOMAIN] Domain error in a mathematical function argument.

[#ERR] Indicates a generic run-time error. All run-time errors not falling in any predefined
category generate the value #ERR.

[#EVERY] Errorin the arguments of the Every Function

[#EVERYDAY] Errorin the arguments of the EveryDay Function

[#EVERYMONTH] Errorin the arguments of the EveryMonth Function

[#EVERYWEEK] Errorin the arguments of the EveryWeek Function

[#EVERYYEAR] Errorin the arguments of the EveryYear Function

[#FACT/<=0] Factorial of a negative number.

[#FACT/NOINT] Factorial of a non-integer number.

[#FV/n] Error in a Future Value Functions (FV). The number identifies the type of error.

[#GETSTEP] Error in the user_defined_step argument of the GetStep function.

[#INVENTORY/n] Error in an Inventory Management function. The number identifies the type of error.

[#LOG/<=0] Natural logarithm of a negative number.

[#LOG10/<=0] Base 10 logarithm of a negative number.

[#MOD/0] Division by 0 in a calculation in the model.

[#MONTH] Error in the internal_date argument of the Month function.

[#NOMEMORY] Insufficient memory for the calculation.

[#NUMPERIODS/n]Error in the NumberOfPeriods function. The number identifies the type of error.

[#OVERFLOW] Number outside the allowed range.

[#PLOSS] Partial loss of significance.

[#POW/<0] Raising to a non-integer negative power with base less than zero.

[#POW/=0] Raising to a negative power with base equal to zero.

[#PV/n] Error in a Present Value Functions (PV). The number identifies the type of error.

[#REQUEST] Error in importing data from another DS Lab model with the Request function.

[#SING] Error in a mathematical function argument.

[#SP/n] Error in a Stock Portfolio Functions (SP). The number identifies the type of error.

[#SQRT/<0] Square root of a negative number.

[#ST/n] Error in a Short Term Investment Functions (ST). The number identifies the type of
error.

[#STAT/n] Error in a Statistical Functions. The number identifies the type of error.

[#TLOSS] Total loss of significance.

[#TREND1/n] Error in the Trend1 function. The number identifies the type of error.

[#TREND2/n] Error in the Trend2 function. The number identifies the type of error.

[#TREND3/n] Error in the Trend3 function. The number identifies the type of error.

[#UNDERFLOW] Number outside the allowed range.

[#WEEK] Error in the internal_date argument of the Week function.

[#YEAR] Error in the internal_date argument of the Year function.

Use of a Variable with an Error Value (Cascade Errors)

[#value] Indicates a value that is no longer reliable. It is generated when another variable
connected as an input assumes a value that is no longer reliable or when it is left
undefined.

[#REF] The variable in question makes use of another variable which has a Run-Time error at
the specified step.

These two error values are powerful debugging tools, enabling you to rapidly identify the root of a
problem. By following back the chain of variables showing one of these error values, you quickly reach
the variable which generated the error.

- In the case of a chain of [#value] errors, this variable will have an undefined or incorrectly defined
script, and thus the error value [?].

The Script Language

A script is used to define each variable in a model. The script is actually a program written in a simple
programming language.

The purpose of the script is to give a numerical value to the variable. In most cases, it is very simple: a
single expression that calculates a number. For example, the script of the Total Costs variable will be the
sum of all the Expense variables connected to it.

In this respect, the DS Lab language is very similar to a spreadsheet formula language. The script can
however become a small program including the local variables and control structures typical of all
programming languages.

The Structure of a Script
Data Types and Formats
DS Lab Model Elements
Local or Temporary Variables
Step, RC and Array Notation
Script Programming Instructions
Operators
Functions
System Constants
System Variables

The Structure of a Script

The script is defined in connection with a variable: each variable has a script that calculates its value
(even if this is a constant). Therefore a script must always return a single numerical value that will be the
value of the variable at that step.

For this reason, the script is usually an expression which calculates a value, exactly like a spreadsheet
formula. Before the final expression, however, there can be a short or long program that defines local
variables, executes cycles, reads a table, etc.

For example, suppose we have two variables; one called Estimated Revenue and the other Estimated
Costs. From these we want to calculate a profit forecast.

One possible script for the Expected Profit variable is simply the difference between revenue and costs:
estimated revenue - estimated costs
This is the simplest case: the script is a single expression like a spreadsheet formula.

Now, supposing we want to simulate a situation in which the profit must be no less than 10, the script
could be developed like this:
minimum_profit = 10
local_estimated = estimated revenue - estimated costs
Return Max(minimum_profit, local_estimated)
This script no longer looks like a spreadsheet formula, more like a small program in a language such as
Basic or dBase. The first two lines assign values to Local Variables and the third returns the greater of
the two values.

The Script thus has this basic structure:

[preliminary program]

[final expression]

However, the preliminary program need not always exist; the script is then just an expression that
calculates a value. The preliminary program is a sequence of instructions like any program in any
programming language. A special instruction Return expression causes immediate termination of the
programs execution. In this case the value returned by the script is the value of the expression, which
must always be defined after the keyword Return.

The final expression need not exist either, because a script can return a value with the Return
instruction. Most scripts, however, consist only of the final expression.

The expression is a formula like those in a spreadsheet. It can be a number, a variable or a simple or
complex calculation containing operators, functions, constants and system variables. If no final
expression is calculated in the Script, the returned value is 0.

There must be no other instruction after the final expression. This is checked when the script is entered.

Data Types and Formats

There are two data types in DS Lab: numbers and dates.

- Numbers can be integers, decimal numbers or expressed in exponential notation. Internally they are
all saved in double precision floating point format (IEEE Institute of Electrical and Electronics Engineers
standard). This means that numbers can range approximately between 1.7E-308 and 1.7E+308.

- Dates are represented internally as an eight figure number obtained from the year, month and day in
the form YYYYMMDD.

Single-figure months and days are preceded by a 0 (zero). For example, July 6th 1993 is represented
internally by the number 19930706.

The system variables CURRENTSTEP and TIME contains the date of the current step unit in this
format. The function SystemDate returns the date given by the computers internal clock in the same
format.

DS Lab Model Elements
Variables
Constants
Series
Inputs
Tables

Variables

Variables are those elements whose value is calculated through a script. They are represented
graphically by a circle.

For shadow variables, the symbol becomes a double circle.

A variable can be used in another variables script if it is connected graphically to the second variable,
when it will appear in the list of Connected Elements in the second variables script editing box.

Constants

Constants represent a fixed value, which ordinarily does not change during the simulation and any
subsequent simulations (though by using the Poke function, the value of a Constant can be changed in
the course of a simulation).

Constants are represented by a square.

For shadow constants, the outline of the square is doubled.

To be used in the script of a variable, the constant must be connected to it graphically, when it will appear
in the list of Connected Elements in the variables script editing box.

Series

Series represent data which is entered manually or copied from external sources, not calculated through
a formula or script. Usually they are used to give starting data to a model. A series contains one value for
each step in the simulation.

Series are represented by a crosshair symbol.

For shadow series, the outline of the symbol is doubled.

To be used in the script of a variable, the series must be connected to it graphically, when it will appear in
the list of Connected Elements in the variables script editing box. A particular value in the series is
referenced in the variables script by the use of Step Notation.

Inputs

Inputs, like constants, represent a fixed value. The only difference between the two types of element is
that, when the Recalculate command is given, a dialog box appears listing all the Inputs in the model and
prompting the user to confirm or change the value assigned to them. Inputs do not normally change their
value during the simulation (though by using the Poke function, the value of an Input can be changed in
the course of the simulation).

Inputs are represented by a triangle.

For shadow constants, the outline of the triangle is doubled.

To be used in the script of a variable, the input must be connected to it graphically, when it will appear in
the list of Connected Elements in the variables script editing box.

Tables

Like series, Tables represent data which is entered manually or copied from external sources. The table
format allows you to insert values and comments in a conveniently flexible form: in effect, each table is a
small spreadsheet (100 rows x 16 columns).

Tables are represented by a grid symbol.

For shadow tables, the outline of the symbol is doubled.

To be used in the script of a variable, the table must be connected to it graphically, when it will appear in
the list of Connected Elements in the variables script editing box.

In the script of a variable, you can refer to a particular cell in a table connected to it by means of the usual
spreadsheet cell notation (RC Notation), e.g. R2C4 or R(pointer)C4, where pointer is the name of a local
variable.

Local or Temporary Variables

A script may contain one or more local variables. The first time a local variable is used must be in an
assignment statement which gives it an initial value. After that it can be used anywhere it is allowed. It
can be reassigned with a new value later in the script. The local variable exists only during execution of
the script in which it was defined: its value is not kept after the scripts value has been calculated. This is
why it is also called temporary.

The name of a local variable must start with either a letter or an underscore character (_), and can
include only alphanumeric and underscore characters.

Only the first 15 characters of a local variables name are significant. However, the name itself may be
longer than 15 characters.

Step, RC and Array Notation

Step Notation
RC Notation
Array Notation

Step Notation

Step notation is used to refer to the value of an element at a specific step in the simulation. It is enclosed
in square brackets after the name of an element. This notation can be used with series and variables.

Syntax

element [[+ | -] expression]

There are three types of step notation:

- Backward Relative: after the square bracket, the minus sign (-) must be inserted, indicating backward
relative notation, followed by the number of steps.

For example, [-1] returns the value of element for the previous step. If this refers to a non-existent step,
the value 0 is returned.

- Forward Relative: after the square bracket, the plus sign (+) must be inserted to indicate forward
relative notation, followed by the number of steps.

For example, [+3] returns the value of element for three steps further forward. If this refers to an non-
existent step, the value 0 is returned.

This notation cannot be used with variables because when the current step is calculated, the future steps
have yet to be calculated.

- Absolute: after the square bracket, the step (1,2,...) or the period (January 1993, February 1993, ...) is
specified for which the value is to be taken. If a non-existent step is referred to, the value 0 is returned.

In this case the model becomes dependent on the simulation parameters chosen: if the step unit is the
day, the absolute reference must be expressed in days, etc.

Incorrect step notation is the most common cause of circular reference errors. Specifying a different step
(normally a past step) in one of the variables will resolve most errors of this type.

RC Notation

RC notation is a means of indicating a particular cell in a table. This notation can only be applied to
tables.

Syntax

table [R [(] expression [)] C [(] expression [)]]

The parentheses are required when an expression other than a number is specified. For example, [R1C1]
refers to the cell in row 1, column 1; whereas [R(SIMSTEP)C1] refers to the cell in column 1 of the row
whose number is the same as that of the current step.

Array Notation

Array notation is used in DS Lab to specify a range or array of values. In the script language, array
notation is used only in the arguments of functions that require a series of values.

For example, the Sum function calculates the sum of a series of values, and requires as its argument the
name of an element followed by array notation. Array notation can be used with variables, series and
tables; the syntax for the three cases differs, and is explained below for each case.

Any element referred to with array notation is included in the general term array.

Syntax 1 Variables

In the case of a variable, array notation consists of two backward relative or absolute step notation
references indicating the first and last values to be included in the array, separated by a colon (:).

variable [[-] expression : [-] expression]
Note: In the case of absolute references, the value 0 (zero) is returned for any steps that have not yet

been calculated (steps which are further forward in the simulation than the current step).

Syntax 2 Series

In the case of a series, array notation consists of two step notation references of any type (backward
relative, forward relative or absolute) indicating the first and last values to be included, separated by a
colon (:):

series [[+ | -] expression : [+ | -] expression]
The two elements may be specified in different ways. For example, to sum the last three steps, including
the current one, of a series called Values, the following array notation could be used:
Sum (Values [-2 : SIMSTEP])
where SIMSTEP is the system variable containing the number of the current step.

Syntax 3 Tables

In the case of a table, array notation consists of two references in RC notation indicating the first and last
cells to be included in the array, separated by a colon (:):

table [R [(] expression [)] C [(]expression [)] : R [(] expression [)] C [(]expression [)]]

The parentheses are required when an expression other than a number is specified. The array can be
defined in a row or in a column. If it is defined in a column, the row must remain constant (e.g.
[R1C1:R1C5]); if in a row, the column must remain constant (e.g. [R1C1:R5C1]).

Script Programming Instructions

The script programming instructions control the order in which operations are executed.

The available instructions are:

Assignment
Do Case ... EndCase
Do While ... EndDo
Exit
Return
For ... Next
If ... EndIf
Loop
LoopTime
Rem/Note/'/&&

Operators

The order of priority of the operators is shown in the following table. It is that followed by most
programming languages:

-
(sign) NOT
!
^
* / MOD
%
+ -
= < > <= >= <>
&
(string)
AND
&
OR
|

The operators on the same line have the same priority. If two operations have the same priority they are
executed from left to right. So, unless otherwise specified by the use of parentheses, mathematical
operations are executed first, then relational operations and logical operations last.

For example, the expression
13 + 1 = 14
is true and gives as a result 1 (TRUE), because the mathematical operator + is evaluated before the
relational one =.

If we had used parentheses, like this:
13 + (1 = 14)
we would have forced the evaluation of the relational operator = before the mathematical one. The
expression within parentheses returns 0 (FALSE) which, when added to 13, returns 13 as the value of the
whole expression.

Mathematical operators
Relational Operators
Logical Operators
String Operators

Mathematical Operators

The following mathematical operators (listed in order of priority) can be used in DS Lab:

With one argument and the syntax:

operator expression

- Change sign.

With two arguments and the syntax:

expression1 operator expression2

^ Raise to the power of

* Multiplication

/ Division

% | MOD Remainder of an integer division

+ Addition

- Subtraction

Relational Operators

The following relational operators (all of the same priority) are available in DS Lab. They all take two
arguments with the following syntax:

expression1 operator expression2

= Equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

<> | != Not equal to

Logical Operators

The following logical operators (listed in order of priority) can be used in DS Lab:

With one argument:

NOT | !
with the syntax:

NOT expression

or

! expression

The NOT operator can be used in either of the above forms and returns the logical opposite of the
expression. Any positive or negative value of the expression other than 0 has the logical value TRUE, so
its NOT is FALSE (0).

With two arguments (equal priority):

AND | &
with the syntax:

expression1 AND expression2

or

expression1 & expression2

The AND operator can be used in either of the above forms and returns the value TRUE if both the
expressions are true. Any positive or negative value of the expressions other than 0 has the logical value
TRUE.

OR | |
with the following syntax:

expression1 OR expression2

or

expression1 | expression2

The OR operator can be used in either of the above forms and returns the value TRUE if at least one of
the two expressions is TRUE. Any positive or negative value of the expressions other than 0 has the
logical value TRUE.

String Operators

The following String concatenating operator is available in DS Lab:

&
with the following syntax:

string1 & string2 | mathematical_expression & ...

This operator is used in functions that require strings as arguments (such as DDEExecute, DDEPoke,
DDERequest, Date, etc.). For example, the following script can be used to export the value of the
variable Costs to the Excel spreadsheet Sheet1, placing it in a cell in row 1 and the column corresponding
to the step of the simulation (column 1 for the first step, column 2 for the second, etc.):

DDEPoke ("Excel", "Sheet1", "R1C"&SIMSTEP, Costs)

Functions

The functions that can be used in scripts are summarized here and listed by categories. In the DS Lab
script language, it is conventional to capitalize the initial letter of each word making up the name of the
function and to write the rest of the word in lower case. However, when you use a function in a script you
can write it in either upper or lower case. The function will be saved internally with its name in the
standard format and the next time you call up that script you will find it has the first letter of each word
capitalized.

Financial Functions
Inventory Functions
Statistical Functions
Mathematical Functions
Time Related Functions
Input/Output and DDE Functions
Error Functions
Control Functions

Financial Functions

The financial functions are divided into seven groups of related functions. The names of all functions start
with a group code. For example, the standard function in the Present Value group that calculates the
Internal Rate of Return is named PVRateOfReturn. This allows immediate identification of the group to
which a function belongs and puts all the functions of the same group together in alphabetical order.

The seven groups and their codes are:

Present Value Functions (PV)
Advanced Present Value Functions (APV)
Future Value Functions (FV)
Advanced Future Value Functions (AFV)
Bond Functions (Bond)
Short Term Investment Functions (ST)
Stock Portfolio Functions (SP)
In the financial functions, all percentages are written as decimal numbers. For example, 45% is written
0.45.

Present Value Functions (PV)

The Present Value functions are used to calculate the present value of a future amount. The future
amount can be a single payment or a series of payments: for example, annuities, pensions and deferred
payments. By calculating their present values, the PV functions enable you to compare cash flows taking
place at different times. These functions are limited to cases involving fixed cash flows at regular intervals
and constant interest rates, and those that can be reduced to this form. For cases not falling in this
category, the Advanced Present Value (APV) functions should be used.

The functions in this group start with the code PV (Present Value) and are listed below:

PVNumberOfCashFlows
PVPresentValue
PVPresentValueDeferredCashFlows
PVPresentValueOfFutureValue
PVRateOfReturn
PVSizeOfCashFlows
PVSizeOfDeferredCashFlows.

Advanced Present Value Functions (APV)

The functions in the Present Value (PV) group are limited to cases involving fixed cash flows at regular
intervals and constant interest rates. The Advanced Present Value (APV) functions are not subject to
the these limitations and are suitable for cases in which the cash flows and/or interest rates vary.

To obtain this greater flexibility, these functions require more data. Series or tables must be used for all
arguments having a different value at each step. For example, the function will read the variable cash
flows listed in a table called Cash Flows using the notation
Cash Flows [R1C1:R1C24].
The functions of this group can be subdivided into three levels requiring increasing amounts of data:

In first level functions, the cash flow timings and interest rates are constant, but the value of the cash flow
changes at a fixed rate. These functions can be used in cases where the cash flows are index-linked, and
limit the amount of data required. An example is APVPresentValueIncreasingCashFlows.

In second level functions, the cash flow timings and interest rates are constant, but the value of the cash
flows can vary for each step. This level is available in most spreadsheets, but without all the options
provided by the functions of this group. An example is APVPresentValueVariableCashFlows.

In third level functions, both the interest rate and the amount of the cash flows can vary at each step. The
only limitation is that the interest rate can change only when the end of a cash flow period coincides with
the end of an interest compounding period. An example is APVPresentValueVariableRates.

Cash flows can be positive or negative. A positive value for a cash flow means a sum received by the
account concerned: a borrowing or a bond coupon payment will therefore be positive. A negative value
represents an outgoing sum: an interest payment or the repayment of a loan will be negative. In the
second and third level functions, interest rates can also be negative.

The functions in this group start with the code APV (Advanced Present Value) and are listed below:

APVNumberOfCashFlows
APVPresentValueIncreasingCashFlows
APVPresentValueVariableCashFlows
APVPresentValueVariableRates
APVRateOfReturnIncreasingCashFlows
APVRateOfReturnVariableCashFlows
APVSizeOfCashFlows

Future Value Functions (FV)

The functions of this group estimate the growth of a fund or of any series of cash flows subject to
compound interest. These functions are limited to cases involving constant cash flows at regular intervals
with a constant interest rate, or which can be reduced to this form. For cases not falling in this category,
the Advanced Future Value Functions (AFV) should be used.

These functions do not require series or tables; they use the given arguments to calculate a single value.
The interest rate must be a number between 0 and 1, so the future value will always be greater than the
present value. Both the number and the value of the cash flows must be greater than 0.

The functions in this group start with the code FV (Future Value) and are listed below:

FVFutureValue
FVFutureValueOfPresentValue
FVNumberOfCashFlows
FVNumberOfPeriods
FVRateOfReturn
FVSizeOfCashFlows

Advanced Future Value Functions (AFV)

The functions in the Future Value (FV) group are limited to cases involving fixed cash flows at regular
intervals and constant interest rates. The Advanced Future Value (AFV) functions are not subject to the
same limitations. They are suitable for cases in which the cash flows and/or interest rates vary.

To obtain this greater flexibility, these functions require more data. Series or tables must be used for all
arguments having a different value at each step. For example, the function will read the variable cash
flows listed in a table called Cash Flows using the notation
Cash Flows [R1C1:R1C24].
The functions of this group can be subdivided into three levels requiring increasing amounts of data:

In first level functions, the cash flow timings and interest rates are constant, but the value of the cash
flows changes at a fixed rate. These functions can be used in cases where the cash flows are index-
linked, and limit the amount of data required. An example is AFVFutureValueIncreasingCashFlows.

In second level functions, the cash flow timings and interest rates are constant, but the value of the cash
flows can vary for each step. This level is available in most spreadsheets, but without all the options
provided by the functions of this group. An example is AFVFutureValueVariableCashFlows.

In third level functions, both the interest rate and the amount of the cash flows can vary at each step. The
only limitation is that the interest rate can change only when the end of a cash flow period coincides with
the end of an interest compounding period. An example is AFVFutureValueVariableRates.

Cash flows can be positive or negative. A positive value for a cash flow means a sum received by the
account concerned: a borrowing or a bond coupon payment will therefore be positive. A negative value
represents an outgoing sum: an interest payment or the repayment of a loan will be negative. With the
second and third level functions, interest rates can also be negative.

The functions of this class start with the code AFV (Advanced Future Value) and are listed below:

AFVNumberOfCashFlows
AFVFutureValueIncreasingCashFlows
AFVFutureValueVariableCashFlows
AFVFutureValueVariableRates
AFVRateOfReturnIncreasingCashFlows
AFVRateOfReturnVariableCashFlows
AFVSizeOfCashFlows

Bond Functions (Bond)

This group includes functions to evaluate individual bonds and to measure their yields and risk factors. A
bond is a guarantee of receiving cash flows at a fixed interest rate (coupons) until the bond expires, at
which time you receive the final interest payment and the repayment of the bonds face value. The term
Bonds includes all categories of fixed-interest securities, including government or public authority bonds
and private fixed-interest investments such as debentures. All percentages are expressed as decimal
numbers. For example, a 12% coupon rate is expressed as 0.12.

Suppose at the end of 1991 we buy a 7% treasury bond expiring in 1996 with a face value of $1000. This
means that each year for the next 5 years we will receive 7% interest on $1,000 (the coupon rate), that is,
$70. For simplicity, let us assume that interest is paid only once a year (though in practice payments are
usually made twice yearly, or even more frequently in the case of private securities).

Our bond guarantees the following cash flows:

1992 1993 1994 1995 1996

 70 70 70 70 1070

The 1996 cash flow is the sum of the final coupon and the face value of the bond.

The price of a bond is always expressed as a percentage of its face value. In this case, let us suppose its
price is 91.49%, that is we pay $914.90 for it (the issue price).

We will have the following series of cash flows:

1991 1992 1993 1994 1995 1996

-914 70 70 70 70 +1070

The internal rate of return (IRR) of the bonds total cash flows is the discount rate which makes the value
of the bonds future cash flows equal to its purchase price. It is also known as yield to maturity.

The functions of this group start with the word Bond and are listed below:

BondAccruedInterest
BondCost
BondCostEstimate
BondDuration
BondPrice
BondPriceEstimate
BondSensitivity
BondYieldToMaturity

Short Term Investment Functions (ST)

The meaning of Short Term is not rigidly defined in financial jargon, but it usually means less than a year
or less than one interest period. Certificates of Deposit, treasury bills and bank deposit accounts are
typical short term investments. Short term instruments are usually calculated using the 360/30 day
convention, meaning that there are 30 days in a month and 360 days in a year.

When not otherwise specified, the yields in these functions are compounded annually. The discount rate
is annual but is not compounded; thus, a rate of 9% for two years would total 18%.

The functions that use Note (in this case, short term investment) are divided into three types according to
the information they require:

- Type 1: those which require as arguments the discount rate and the face value of the security;

- Type 2: those which require as arguments the price and the face value of the security;

- Type 3: those which require as an argument the internal rate of return of the security.

The functions of this group start with the code ST and end with the number of the group they belong to.
They are listed below:

STEndingBalance
STNoteDiscount2
STNoteDiscount3
STNotePrice1
STNotePrice3
STNoteYield1
STNoteYield2

Stock Portfolio Functions (SP)

This group comprises investment portfolio management functions. The functions of this group start with
the code SP (Stock Portfolio) and are listed below:

SPEquityCallOption
SPEquityRateOfReturn
SPPortfolioAveragePeriodicReturn
SPPortfolioRateOfReturn
SPPortfolioStandardDeviation1
SPPortfolioStandardDeviation2
SPPortfolioTimeWeightedRateOfReturn

Inventory Functions (Inventory)

This group comprises inventory management functions. These are standard functions found in most
inventory management packages. Their inclusion in DS Lab allows you to build models employing the
same criteria reorder, minimum stock, etc. used in management systems.

The names of these functions all start with the word Inventory and are listed below:

InventoryEconomicOrderQuantity
InventoryReorderPoint
InventorySafetyStock
InventoryServiceLevel

Statistical Functions

This section includes some basic statistical functions. These are essential tools in many areas of financial
analysis. In particular, some of these functions are the basis for stock market analysis and portfolio
management. The functions are listed below:

Alpha
Beta
CorrelationCoefficient
Mean
StandardDeviation
StandardErrorOfBeta
StandardErrorOfRegression
Trend1
Trend2
Trend3
Variance
WeightedAverage

Mathematical Functions

This section lists all the mathematical functions available in DS Lab.

Abs
ArcCos
ArcSin
ArcTan
Cos
CosH
Exp
Fact
Int
Log
Log10
Max
Min
Rand
Round
Sin
SinH
Sqrt
Sum
SumAll
Tan
TanH

Time Related Functions
This section lists the functions used to manage the time element of simulations. These functions are listed
below:

AddDay
AddMonth
AddWeek
AddYear
Date
Day
DayWeek
DayYear
Every
EveryDay
EveryMonth
EveryWeek
EveryYear
Month
NumberOfPeriods
SystemDate
Week
Year

Input/Output and DDE Functions

This section lists the functions used to manage input and output of data and DDE links. The functions in
this category are listed below:

Request: to import data from other DS Lab models.

Poke: to export data to other DS Lab models.

Execute: to execute DS Lab commands.

DDERequest: to import data from other Windows applications.

DDEPoke: to export data to other Windows applications.

DDEExecute: to make other Windows applications execute commands.

Error Functions

This group contains a single function which, because of its peculiar characteristics, cannot be included in
any of the other groups: the Error function. This allows a Script to be interrupted at any time, returning an
error value (#ERR). It can be used as an alarm signal to indicate an overflow or out of range value or to
show that something has gone wrong (for example in the transmission of data with the DDE functions).

Control Functions

This group contains two functions used to control the execution of the simulation. The functions are:

GetStep, which returns the number of the current user defined step;

CalculateFrom, which allows a simulation to be interrupted and restarted from a different step. In a
script containing a test to see whether a value satisfies a given condition, it can be used to restart the
simulation if the condition is not satisfied.

System Constants

Numerical Constants
Financial Constants
Logical Constants
Environment Constants

Numerical Constants

- PI This constant has the value of p (3.14159...).

- E This constant corresponds to the value of Napiers natural number
(2.7182818285...).

Financial Constants

Periods Per Year
Year and Month Length
Cash Flow Timing
Type of Interest with Fractional or Short Periods

Periods Per Year

All time periods used in the financial functions (in particular, cash flow timings and interest compounding
periods) are expressed as Periods per year. The following constants allow you to specify the required
unit. The third column contains the real annual interest rate corresponding to a nominal rate of 12%.

Value Effective interest rate
CONTINUOUS 0 .1275
ANNUAL 1 .12
SEMIANNUAL 2 .1236
QUARTERLY 4 .12551
BIMONTHLY 6 .12616
MONTHLY 12 .12683
SEMIMONTHLY 24 .12716
BIWEEKLY 26
WEEKLY 52
DAILY 365 .12747

BIWEEKLY and WEEKLY are not valid interest compounding periods. They have been included to
accommodate particular cash flow situations. CONTINUOUS is not a valid cash flow timing period.

Notice that using these Periods per year may introduce a variance in the results. For example, if you are
working on a problem with monthly deposits (MONTHLY) and daily compounding (DAILY), the deposits
are assumed to be equally spaced, that is, all the months are taken to be the same length. Thus if $1,000
is deposited on the last day of every month starting from December 31st, with 12% annual interest per
365 day year, the exact value at the next December 31st, before the deposit, will be $12,816.74, while the
result calculated by FVFutureValue would be $12,813.40.

Year and Month Length

In some situations, DS Lab offers the choice of two calendar options. One option dictates the standard
365-day year calendar. With the other, known as the 360/30 day convention, years have 360 days and all
months have 30 days. The effect of this option is a slight increase in long term yields, little difference in
short term yields, and some confusion.

While available in the Bond and Short Term functions, the 360/30 day convention cannot be used in the
cash flow functions. All the Present Value, Future Value, Advanced Present Valueand Advanced
Future Value functions assume a year of 365 days.

Some functions in these groups have an extra argument to which is assigned one of the two constants:

- C365 for a 365 day year;

- C360 to use the 360/30 day convention.

Cash Flow Timing

In the analysis of cash flows, there are two possible cash flow timings:

- ORDNRY is at the end of the period.

- ADUE is at the beginning of the period.

These two options give significantly different results. For example, depositing $100 per month for 5 years
at a rate of 12% compounded monthly yields $8,167 if interest is paid at the end of the month (ORDNRY)
and $8,249 if it is paid at the beginning (ADUE). The difference between the two is exactly one
compounding period for each cash flow.

Type of Interest with Fractional or Short Periods

Two constants allow you to define whether interest is simple or compound for fractional periods:

- CMPND compound interest

- SIMPLE simple interest

This distinction concerns the calculation of interest for less than a whole compounding period. In this
case, contrary to what might be expected, simple interest gives a higher return than compound. For
example, $1,000 invested for six months at 12% compounded annually will return $60 with simple interest
and only $58.30 with compound interest.

This difference also appears in situations where the cash flow period is more frequent than the deposit
period. In such cases, each deposit can earn significant interest before compounding. In this case, if
$1000 were deposited every three months, the accumulated value after two years would be $8,861.60
with simple interest and $8,852.59 with compound interest.

In real-life applications, simple interest is more common for fractional periods, but compound interest is
sometimes used to simplify calculation. If simple interest is used, the compounding period should be an
integer multiple of the cash flow period.

If the compounding period is the same as or more frequent than the cash flow period, compound interest
is always used. This means that for DS Labs financial functions, compound interest is used even if simple
interest has been specified in the functions arguments.

Logical Constants

A logical expression returns the result True or False. There are two logical constants that can be used in a
DS Lab script:

- TRUE value of 1

- FALSE value of 0

Environment Constants
- UNIT represents the step unit Unit and has the

value 0.
- DAYUNIT represents the step unit Day and has the value

1.
- WEEKUNIT represents the step unit Week and has the

value 2.
- MONTHUNIT represents the step unit Month and has the

value 3.
- YEARUNIT represents the step unit Year and has the

value 4.
- USERDEFINEDUNIT represents the step unit User Defined and has

the value 5.

System Variables

Calculation Status Variables
Simulation Parameter Variables

Calculation Status Variables
- PERIOD/SIMSTEP
These are equivalent and represent the number of the step currently being calculated, starting from the
value 1 which refers to the First Step of the simulation.

These variables are used to vary script execution at different steps, independently of the Step Unit being
used. For example, to execute certain calculations at the first step only, the following script fragment may
be used:

If SIMSTEP = 1 Then
 ...
 ...
EndIf

- SIMULATION
The system variable SIMULATION has the value 1 (TRUE) during simulation, and 0 (FALSE) during the
test calculation of a script on exiting from the script editing dialog box. It is used to execute certain
operations only during the simulation, and not while the model is being built.

For example, if a script is to open another model, cause it to recalculate and close it again, you will
probably want to carry out these operations only during actual simulations, not every time the script
containing these instructions is modified. In such a case, the script can include an If instruction as follows:

If SIMULATION
 Execute("SYSTEM"; "OPEN(MODEL1.LAB)")
 Execute("SYSTEM"; "RECALCULATE(MODEL1.LAB)")
 Execute("SYSTEM"; "CLOSE(MODEL1.LAB)")
EndIf

- STARTLOOP
The system variable STARTLOOP, together with the programming instruction LoopTime and the function
CalculateFrom, enable Goal Seeking capabilities in DS Lab. The STARTLOOP variable is TRUE the first
time a step is calculated, FALSE at each recalculation of the same step. The LoopTime instruction allows
you to force recalculation of a step, while the function CalculateFrom allows recalculation to be started
from a different step.

For further information and a detailed example of the use of the STARTLOOP variable.

- TIME/CURRENTSTEP
These variables are equivalent and represent the date of the current step in the internal format
YYYYMMDD. There are, however, the following exceptions:

- When the Step unit is Unit or User Defined, TIME/CURRENTSTEP variables contain the number of
the current step expressed as an integer.

- When the Step unit is Year, the last four figures (the month and day) are zero.

- When the Step unit is Month, the last two figures (representing the day) are zero.

- When the Step unit is Week, TIME/CURRENTSTEP variables assume the date of the first day of the
current week.

Simulation Parameter Variables

- FIRSTSTEP contains the value assigned to the simulation parameter First Step.

- LASTSTEP contains the value assigned to the simulation parameter Last Step.

- MULTIPLEUNIT contains the value assigned to the simulation parameter Multiple Unit.
- NUMBEROFSTEPS contains the value assigned to the simulation parameter N° of Steps and
represents the number of steps between the First Step and the Last Step inclusive.

- SIMULATIONLENGTH contains the value assigned to the simulation parameter Simulation Length
and represents the number of steps that will be calculated in the next simulation starting from the current
step.

- SIMULATIONSTART contains the value assigned to the simulation parameter Simulation Start and
represents the first step to be calculated.

- STEPUNIT contains a number identifying the simulation parameter Step Unit:
0 (the constant UNIT) if the Step Unit is Unit;
1 (the constant DAYUNIT) if the Step Unit is Day;

2 (the constant WEEKUNIT) if the Step Unit is Week;

3 (the constant MONTHUNIT) if the Step Unit is Month;

4 (the constant YEARUNIT) if the Step Unit is Year.
5 (the constant USERDEFINEDUNIT) if the Step Unit is User Defined.

Functions and Instructions

This chapter contains a description of all the functions and instructions for DS Lab in alphabetical order.

Each entry is divided into the following subsections:

- Description
- Syntax
- Returns
- Comments
- See Also
- Example
Note: In the Syntax and Example subsections of those functions which require more than one argument,

the list separator character is shown as a comma (,). This character is determined by the settings
established in the International dialog box of the Windows Control Panel. If on exiting from the
Script Editing dialog box DS Lab returns the error message Incorrect List Separator Character,
either replace the comma(s) in the script with the list separator character in use in your copy of
Windows, or use Control Panel to change the list separator character to a comma.

Important:The examples shown in this manual can be found in the examples files installed along with DS
Lab.

Abs
AddDay
AddMonth
AddWeek
AddYear
AFVFutureValueIncreasingCashFlows
AFVFutureValueVariableCashFlows
AFVFutureValueVariableRates
AFVNumberOfCashFlows
AFVRateOfReturnIncreasingCashFlows
AFVRateOfReturnVariableCashFlows
AFVSizeOfCashFlows
Alpha
APVNumberOfCashFlows
APVPresentValueIncreasingCashFlows
APVPresentValueVariableCashFlows
APVPresentValueVariableRates
APVRateOfReturnIncreasingCashFlows
APVRateOfReturnVariableCashFlows
APVSizeOfCashFlows
ArcCos
ArcSin
ArcTan
Assignment
Beta
BondAccruedInterest
BondCost
BondCostEstimate
BondDuration
BondPrice
BondPriceEstimate
BondSensitivity

BondYieldToMaturity
CalculateFrom
CorrelationCoefficient
Cos
CosH
Date
Day
DayWeek
DayYear
Do Case ... EndCase
Do While ... EndDo
DDEExecute
DDEPoke
DDERequest
Error
Every
EveryDay
EveryMonth
EveryWeek
EveryYear
Execute
Exit
Exp
Fact
For... Next
FVFutureValue
FVFutureValueOfPresentValue
FVNumberOfCashFlows
FVNumberOfPeriods
FVRateOfReturn
FVSizeOfCashFlows
GetStep
If ... EndIf
Int
InventoryEconomicOrderQuantity
InventoryReorderPoint
InventorySafetyStock
InventoryServiceLevel
Log
Log10
Loop
LoopTime
Max
Mean
Min
Month
NumberOfPeriods
Poke
PVNumberOfCashFlows
PVPresentValue
PVPresentValueDeferredCashFlows
PVPresentValueOfFutureValue
PVRateOfReturn
PVSizeOfCashFlows
PVSizeOfDeferredCashFlows
Rand

Rem / Note / ' / &&
Request
Return
Round
Sin
SinH
SPEquityCallOption
SPEquityRateOfReturn
SPPortfolioAveragePeriodicReturn
SPPortfolioRateOfReturn
SPPortfolioStandardDeviation1
SPPortfolioStandardDeviation2
SPPortfolioTimeWeightedRateOfReturn
Sqrt
StandardDeviation
StandardErrorOfBeta
StandardErrorOfRegression
STEndingBalance
STNoteDiscount2
STNoteDiscount3
STNotePrice1
STNotePrice3
STNoteYield1
STNoteYield2
Sum
SumAll
SystemDate
Tan
TanH
Trend1
Trend2
Trend3
Variance
Week
WeightedAverage
Year

Abs - Function

Description

Finds the absolute value of a number.

Syntax

absolute_number=Abs(number)

Returns

The number if positive; its opposite if negative.

Example

The following script:

Abs (-3)

will return the value 3.

AddDay - Function

Description

Adds a given number of days to a date in internal format.

Syntax

internal_date=AddDay(internal_date, days)

Returns

The date in internal format.

If the internal_date argument does not represent a valid date, the error value #ADDDAY is returned.

Comments

The argument days can be negative. In this case the days will be subtracted from the internal_date
argument.

See Also

AddWeek, AddMonth, AddYear

Example

In a model in which the step unit is Day, the function call:

AddDay(TIME,7)

will add 7 days to the current date.

AddMonth - Function

Description

Adds a given number of months to a date in internal format.

Syntax

internal_date=AddMonth(internal_date, months)

Returns

The date in internal format.

If the internal_date argument does not represent a valid date, the error value #ADDMONTH is returned.

Comments

The argument months can be negative. In this case the months will be subtracted from the internal_date
argument.

See Also

AddDay, AddWeek, AddYear

Example

In a model in which the step unit is Month, the function call:

AddMonth(TIME,3)

will add 3 months to the current date.

AddWeek - Function

Description

Adds a given number of weeks to a date in internal format.

Syntax

internal_date = AddWeek(internal_date, weeks)

Returns

The date in internal format.

If the internal_date argument does not represent a valid date, the error value #ADDWEEK is returned.

Comments

The argument weeks can be negative. In this case the weeks will be subtracted from the internal_date
argument.

See Also

AddDay, AddMonth, AddYear

Example

In a model in which the step unit is Week, the function call:

AddWeek(TIME,5)

will add 5 weeks to the current date.

AddYear - Function

Description

Adds a given number of years to a date in internal format.

Syntax

internal_date =AddYear(internal_date, years)

Returns

The date in internal format.

If the internal_date argument does not represent a valid date, the error value #ADDYEAR is returned.

Comments

The argument years can be negative. In this case the years will be subtracted from the internal_date
argument.

See Also

AddDay, AddWeek, AddMonth

Example

In a model in which the step unit is Year, the function call:

AddYear (TIME,2)

will add 2 years to the current date.

AFVFutureValueIncreasingCashFlows - Function

Description

Calculates the Future Value of a series of cash deposits made at regular intervals, with a constant interest
rate and deposits increasing at each step by a given percentage.

Syntax

future_value = AFVFutureValueIncreasingCashFlows(
number_of_deposits,
deposit_period,
annual_interest_rate,
deposit_amount,
deposit_timing,
short_period_option,
compounding_period,
rate_of_deposit_increase)

Returns

The future value of the series of deposits.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#AFV) and one of the following numbers:
/1 number of deposits, interest rate, rate of increase or deposit amount is not valid;
/2 timing constant is not valid;
/3 short period option or deposit amount is not valid;
/4 deposit or compounding period is out of range;
/9 the iteration process gave rise to an out of range value.

Comments

This function calculates the value of a series of deposits with all interest reinvested at each interest
period. Unlike the standard function FVFutureValue, it requires an argument indicating the rate of
increase in the deposit amount, so as to represent cash flows which are index-linked or vary by a fixed
percentage.

The increase in the deposits takes place annually, so that all the cash flows in a given year are the same.
The rate of increase can be negative to allow representation of payments decreasing by a constant
percentage.

The deposit amount after y years is given by the following formula:

deposit(y) = deposit(0) * (1+rate_of_increase) y

where deposit(0) is the deposit amount variable, representing the amount for the first year.

See Also

AFVFutureValueVariableCashFlows, AFVFutureValueVariableRates, AFVNumberOfCashFlows,
AFVRateOfReturnIncreasingCashFlows, AFVRateOfReturnVariableCashFlows,
AFVSizeOfCashFlows, FVFutureValue, FVFutureValueOfPresentValue, FVNumberOfCashFlows,
FVNumberOfPeriods, FVRateOfReturn, FVSizeOfCashFlows

Example

We want to know whether it is advantageous to sign a life insurance contract which, maturing in 15 years,
will yield $130,000. The payments are monthly, indexed to the annual inflation rate, and start at $200.

Let us suppose that the alternative is annual compound interest at 10% and that the average inflation rate
is 6%.

number_of_deposits = 15 * 12
deposit_period = MONTHLY
annual_interest_rate = 0.10
deposit_amount = 200
deposit_timing = ADUE
short_period_option = SIMPLE
compounding_period = ANNUAL
rate_of_deposit_increase = 0.06
AFVFutureValueIncreasingCashFlows(

number_of_deposits,
deposit_period,
annual_interest_rate,
deposit_amount,
deposit_timing,
short_period_option,
compounding_period,
rate_of_deposit_increase)

The future value returned is $112,628.64, so on this basis the contract gives a better rate of return and
should be signed.

AFVFutureValueVariableCashFlows - Function

Description

Calculates the Future Value of a series of deposits of varying amounts, made at regular intervals with a
constant interest rate.

Syntax

future_value = AFVFutureValueVariableCashFlows(
deposit_period,
annual_interest_rate,
connected element containing cash flows [array notation],
deposit_timing,
short_period_option,
compounding_period)

The brackets after the connected element containing cash flows argument are in bold type to emphasize
that their use is compulsory with this function.

Returns

The future value of the series of deposits.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#AFV) and one of the following numbers:
/1 number of deposits or interest rate is not valid;
/2 timing constant is not valid;
/3 short period option is not valid;
/4 deposit or compounding period is out of range;
/9 the iteration process gave rise to an out of range value.

Comments

This function calculates the future value of a series of deposits with all interest reinvested at each interest
period. Unlike the standard function FVFutureValue, this function allows a different value cash flow for
each deposit period.

The cash flows are passed to the function by specifying the name of the connected element. The array
notation must be in brackets.

For example, if the connected element is a table called Cash Flows, the array can be written like this:

Cash Flows [R1C1:R1C24]

See Also

AFVFutureValueIncreasingCashFlows, AFVFutureValueVariableRates, AFVNumberOfCashFlows,
AFVRateOfReturnIncreasingCashFlows, AFVRateOfReturnVariableCashFlows,
AFVSizeOfCashFlows, FVFutureValue, FVFutureValueOfPresentValue, FVNumberOfCashFlows,
FVNumberOfPeriods, FVRateOfReturn, FVSizeOfCashFlows

Example

We want to find the amount accumulated in a bank account by depositing a variable sum every two
months for two years (12 steps), given an interest rate of 8% (cash flows may be either deposits or
withdrawals).

To do this, an element containing the array of twelve cash flows, in which negative values represent
withdrawals and positive values deposits, must be connected to the variable containing this function.

For example, we can use the first 12 values of the series called Cash Flows 1 containing the following
values:

Step1 4000 Step7 -2600
Step2 800 Step8 1000
Step3 -1300 Step9

1200
Step4 -500 Step10 -1600
Step5 1000 Step11 -900
Step6 700 Step12 800

The script will be as follows:

deposit_period = BIMONTHLY
annual_interest_rate = 0.08
deposit_timing = ADUE
short_period_option = CMPND
compounding_period = SEMIANNUAL
AFVFutureValueVariableCashFlows(

deposit_period,
annual_interest_rate,
Cash Flows 1 [1:12],
deposit_timing,
short_period_option,
compounding_period)

At the end of the chosen period the bank account will contain $3,179.

AFVFutureValueVariableRates - Function
Calculates the Future Value of a series of deposits of varying amounts, made at regular intervals with a
variable interest rate.

Syntax

future_value = AFVFutureValueVariableRates(
deposit_period,
connected element containing interest rates [array notation],
connected element containing cash flows [array notation],
deposit_timing,
compounding_period)

The brackets after the connected element containing interest rate and connected element containing cash
flows arguments are in bold type to emphasize that their use is compulsory with this function.

Returns

The future value of the series of deposits.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#AFV) and one of the following numbers:
/1 number of deposits is not valid;
/2 timing constant is not valid;
/4 deposit or compounding period is out of range;
/9 the iteration process gave rise to an out of range value;
/11 interest rate is not valid.

Comments

This function calculates the future value of a series of deposits with all interest reinvested at each interest
period. Unlike the standard function FVFutureValue, both the cash flows and the interest rate can have
different values at each deposit period.

The cash flow and interest rate values are passed to the function by specifying two arrays of values
contained in two connected elements (or two parts of the same connected element, e.g. a table). The
array notation must be in brackets. The two arrays must correspond: for example, the third payment in the
Deposits array earns a rate of interest given by the third value of the Interest Rates array.

The only limitation on variability is that interest rates can change only when a deposit period and an
interest calculation period finish at the same time. For example, if the interest calculation is QUARTERLY
while the deposit period is MONTHLY, the interest array will have to repeat the same rate for three deposit
periods, since the payment period and the interest calculation period finish at the same time only at the
end of every quarter.

For example, suppose that a table named Deposits and Interest Rates, containing the deposits in the first
row and the corresponding interest rates in the second, is connected to the variable containing this
function. In this case both the arrays are contained in the same connected element.

The connected element containing interest rates [array notation] argument could contain the following
reference:

Deposits and Interest Rates [R1C1:R1C24]

while the connected element containing cash flows [array notation] argument could contain:

Deposits and Interest Rates [R2C1:R2C24]

See Also

AFVFutureValueIncreasingCashFlows, AFVFutureValueVariableCashFlows,
AFVNumberOfCashFlows, AFVRateOfReturnIncreasingCashFlows,
AFVRateOfReturnVariableCashFlows, AFVSizeOfCashFlows, FVFutureValue,
FVFutureValueOfPresentValue, FVNumberOfCashFlows, FVNumberOfPeriods, FVRateOfReturn,
FVSizeOfCashFlows

Example

We want to know the future value of a bank account in which various deposits and withdrawals are made
and which is subject to at least two changes in the interest rate. The cash flows and corresponding
interest rates remain the same for the first five years, then change for two years, and change again for the
last three years. Bimonthly cash flows are expected for ten years, for a total of 60 steps.

One or two elements containing input values are connected to the variable containing this function.

For example, we can connect two series named Cash Flows 2 and Interest Rates containing the following
values:

$2,000 at 0.11 interest repeated for the first 30 steps;
-$1,000 at 0.085 interest repeated for the next 12 steps;
$1,500 at 0.09 interest repeated for last 18 steps.

The script will be as follows:

deposit_period = BIMONTHLY
deposit_timing = ADUE
compounding_period = SEMIANNUAL
AFVFutureValueVariableRates(

deposit_period,
interest rates [1:60],
cash flows 2 [1:60],
deposit_timing,
compounding_period)

At the end of the period the bank account will contain $137,164.16.

AFVNumberOfCashFlows - Function

Description

Calculates the Number of Cash Flows needed to obtain a given future value by means of a series of
deposits at regular intervals, with a constant interest rate and a fixed rate of increase of the deposits at
each step.

Syntax

number_of_deposits = AFVNumberOfCashFlows(
future_value,
deposit_period,
deposit_amount,
annual_interest_rate,
compounding_period,
deposit_timing,
short_period_option,
rate_of_deposit_increase)

Returns

The number of deposits.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#AFV) and one of the following numbers:
/1 number of deposits, interest rate or deposit amount is not valid;
/2 timing constant is not valid;
/3 short period option is not valid;
/4 deposit or compounding period is out of range;
/9 the iteration process gave rise to an out of range value;
/10 the maximum number of iterations was exceeded without converging on a value for the number of

deposits.

Comments

This function is used to answer questions such as: How many deposits do I have to make to accumulate
a certain capital sum?

Unlike the standard function FVSizeOfCashFlows, a rate of increase in the deposit amount may be
specified so as to represent cash flows which are index- linked or vary by a fixed percentage.

The increase in the deposits takes place annually, so that all the cash flows in a given year are the same.

The deposit amount after y years is given by the following formula:

deposit(y) = deposit(0) * (1+rate_of_increase) y

where deposit(0) is the deposit amount argument, representing the amount for the first year.

This function is iterative. The iteration process terminates when a value with an error of less than one-
millionth is obtained or when more than 100 iterations have been made. In the latter case the error value
#AFV/10 is returned.

See Also

AFVFutureValueIncreasingCashFlows, AFVFutureValueVariableCashFlows,
AFVFutureValueVariableRates, AFVRateOfReturnIncreasingCashFlows,
AFVRateOfReturnVariableCashFlows, AFVSizeOfCashFlows, FVFutureValue,
FVFutureValueOfPresentValue, FVNumberOfCashFlows, FVNumberOfPeriods, FVRateOfReturn,
FVSizeOfCashFlows

Example

A client wants to know from an insurer how many index-linked deposits he has to make to accumulate a
capital sum of $100,000, given a 10% interest rate. The first year the cash flow amount is $2,100, payable
twice a year. In the following years the inflation index will increase the deposits by 6.5% annually.

future_value = 100000
deposit_period = SEMIANNUAL
deposit_amount = 2100
annual_interest_rate = 0.10
compounding_period = ANNUAL
deposit_timing = ORDNRY
short_period_option = SIMPLE
rate_of_deposit_increase = 0.065
AFVNumberOfCashFlows(

future_value,
deposit_period,
deposit_amount,
annual_interest_rate,
compounding_period,
deposit_timing,
short_period_option,
rate_of_deposit_increase)

The smallest number of deposits to exceed $100,000 is found to be 22.

AFVRateOfReturnIncreasingCashFlows - Function

Description

Calculates the Internal Rate of Return needed to obtain a given future value by means of a series of
deposits at regular intervals, with a constant interest rate and a percentage increase of the deposits at
each step.

Syntax

rate_of_return = AFVRateOfReturnIncreasingCashFlows(
future_value,
deposit_period,
deposit_amount,
number_of_deposits,
compounding_period,
short_period_option,
deposit_timing,
rate_of_deposit_increase)

Returns

The internal rate of return of a series of deposits.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#AFV) and one of the following numbers:
/1 number of deposits, deposit amount or rate of increase is not valid;
/2 timing constant is not valid;
/3 short period option is not valid;
/4 deposit or compounding period is out of range;
/9 the iteration process gave rise to an out of range value;
/10 the maximum number of iterations was exceeded without converging on a value for the rate of

return.

Comments

This function can be used to determine the feasibility of an investment plan or to evaluate the risk
involved in reaching given objectives.

As compared to the standard function FVRateOfReturn, it allows a fixed rate of increase in the cash
flows.

The increase in the deposits takes place annually, so that all the cash flows in a given year are the same.

The deposit amount after y years is given by the formula:

deposit(y) = deposit(0) * (1 + rate_of_increase) y

where deposit(0) is the deposit amount variable, representing the amount for the first year.

This function is iterative. The iteration process terminates when a value with an error of less than one-
millionth is obtained or when more than 100 iterations have been performed. In the latter case the error
value #AFV/10 is returned.

See Also

AFVFutureValueIncreasingCashFlows, AFVFutureValueVariableCashFlows,
AFVFutureValueVariableRates, AFVNumberOfCashFlows, AFVRateOfReturnVariableCashFlows,
AFVSizeOfCashFlows, FVFutureValue, FVFutureValueOfPresentValue, FVNumberOfCashFlows,
FVNumberOfPeriods, FVRateOfReturn, FVSizeOfCashFlows

Example

An investor wants to know what rate of return he should ask his broker to obtain in order to accumulate
$300,000 in 20 years, depositing $300 monthly for the first year and increasing the deposit amount by 7%
each year.

future_value = 300000
deposit_period = MONTHLY
deposit_amount = 300
number_of_payments = 20 * 12
compounding_period = ANNUAL
short_period_option = CMPND
deposit_timing = ADUE
rate_of_deposit_increase = 0.07
AFVRateOfReturnIncreasingCashFlows(

future_value,
deposit_period,
deposit_amount,
number_of_payments,
compounding_period,
short_period_option,
deposit_timing,
rate_of_deposit_increase)

The rate of return the investor should ask for is 8.10%.

AFVRateOfReturnVariableCashFlows - Function

Description

Calculates the Internal Rate of Return needed to accumulate a given future value by means of a series of
variable cash flows at regular intervals.

Syntax

rate_of_return = AFVRateOfReturnVariableCashFlows(
future_value,
deposit_period,
connected element containing cash flows [array notation],
starting_rate,
deposit_timing,
short_period_option,
compounding_period)

The brackets after the connected element containing cash flows argument are in bold type to emphasize
that their use is compulsory with this function.

Returns

The internal rate of return of a series of payments.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#AFV) and one of the following numbers:
/1 future value is not valid;
/2 timing constant is not valid;
/3 short period option is not valid;
/4 deposit or compounding period is out of range;
/9 the iteration process gave rise to an out of range value;
/10 the maximum number of iterations was exceeded without converging on a value for the number of

cash flows.

Comments

This function can be used to determine the viability of an investment plan or to evaluate the risk involved
in reaching given objectives.

Unlike the standard function FVRateOfReturn, the cash flows can vary for each deposit period.

This function is iterative. The iteration process terminates when a value with an error of less than one-
millionth is obtained or when more than 100 iterations have been performed. In the latter case the error
value #AFV/10 is returned.

To facilitate calculation of the correct rate of return, one argument contains the starting value for the
iteration. If no value is specified, this argument defaults to 0.10 (10%).

The calculated rate of return is the lowest needed to obtain at least the required future value; a smaller
value would not reach the given sum.

The cash flows are passed to the function by specifying the name of the connected element. The array
notation must be in brackets. For example, if the connected element is a table called Cash Flows, the
array could be written like this:

Cash Flows [R1C1:R1C24]

See Also

AFVFutureValueIncreasingCashFlows, AFVFutureValueVariableCashFlows,
AFVFutureValueVariableRates, AFVNumberOfCashFlows, AFVRateOfReturnIncreasingCashFlows,
AFVSizeOfCashFlows, FVFutureValue, FVFutureValueOfPresentValue, FVNumberOfCashFlows,
FVNumberOfPeriods, FVRateOfReturn, FVSizeOfCashFlows

Example

We want to know the rate of return which will accumulate $5,000 by means of variable quarterly cash
flows for a total of 12 steps.

To do this, an element containing the values of the twelve cash flows must be connected to the variable
containing this function.

For example, we could use the first 12 values of a series called Cash Flows 3 in which the following array
is entered:

Step1 4000 Step7 -2600
Step2 800 Step8 1000
Step3 -1300 Step9 1200
Step4 -500 Step10 -1600
Step5 1000 Step11 -900
Step6 700 Step12 800

The script will be as follows:

future_value = 5000
deposit_period = QUARTERLY
starting_rate_of_return = 0.1
deposit_timing = ADUE
short_period_option = CMPND
compounding_period = ANNUAL
AFVRateOfReturnVariableCashFlows(

future_value,
deposit_period,
cash flows 3 [1:12],
starting_rate_of_return,
deposit_timing,
short_period_option,
compounding_period)

The required rate of return is 19.16%.

AFVSizeOfCashFlows - Function

Description

Calculates the initial Size of Cash Flow needed to accumulate a specified future value by means of a
series of regular deposits, given a constant interest rate and a regular fixed percentage increase in the
deposit amount.

Syntax

deposit_amount = AFVSizeOfCashFlows(
number_of_deposits,
deposit_period,
annual_interest_rate,
future_value,
deposit_timing,
short_period_option,
compounding_period,
rate_of_deposit_increase)

Returns

The amount of the initial deposit.

If the deposit increase is 0 (zero), this will be the value for all cash flows; otherwise the amount remains
constant during each year and changes from year to year according to the following rule:

- for the first year the returned value applies;

- for all subsequent years, the amount can be calculated by the following formula, which returns the
amount after y years (deposit(y)):

deposit(y) = deposit(0) * (1 + rate_of_increase) y
where deposit(0) is the returned value.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#AFV) and one of the following numbers:
/1 number of deposits, rate of increase, future value or interest rate is not valid;
/2 timing constant is not valid;
/3 short period option is not valid;
/4 deposit or compounding period is out of range;
/7 number of deposits insufficient;
/9 the iteration process gave rise to an out of range value;
/10 the maximum number of iterations was exceeded without converging on a value for the amount of

the initial deposit.

Comments

This function can be used to find the weekly, monthly, etc. amount needed to accumulate a certain capital
in a given time.

Unlike the standard function FVSizeOfCashFlows, a rate of increase in the deposit amount may be
specified so as to represent cash flows which are index- linked or vary by a fixed percentage.

This function is iterative. The iteration process terminates when a value with an error of less than one-
millionth is obtained or when more than 100 iterations have been performed. In the latter case the error
value #AFV/10 is returned.

See Also

AFVFutureValueIncreasingCashFlows, AFVFutureValueVariableCashFlows,
AFVFutureValueVariableRates, AFVNumberOfCashFlows, AFVRateOfReturnIncreasingCashFlows,
AFVRateOfReturnVariableCashFlows, FVFutureValue, FVFutureValueOfPresentValue,
FVNumberOfCashFlows, FVNumberOfPeriods, FVRateOfReturn, FVSizeOfCashFlows

Example

To find the starting deposit amount needed to accumulate $100,000 in 10 years at an annual interest rate
of 11% compounded daily, with deposits increasing by 7% each year:

number_of_deposits = 40
deposit_period = QUARTERLY
annual_interest_rate = 0.095
future_value = 100000
deposit_timing = ADUE
short_period_option = CMPND
compounding_period = DAILY
rate_of_deposit_increase = 0.07
AFVSizeOfCashFlows(

number_of_deposits,
deposit_period,
annual_interest_rate,
future_value,
deposit_timing,
short_period_option,
compounding_period,
rate_of_deposit_increase)

The initial deposit will have to be $1,129.28.

Alpha - Function

Description

Calculates the Alpha coefficient (a) of two arrays of values, that is the intercept of the regression line of
the two arrays .

Syntax

alpha = Alpha(
connected element containing dependent array [array notation]
connected element containing independent array [array notation])

The brackets after the connected element containing array arguments are in bold type to emphasize that
their use is compulsory with this function.

Returns

The alpha index.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#STAT) and one of the following numbers:
/1 number of observations less than 3;
/9 calculation has given rise to an out of range value;
/18 division by zero.

Comments

This function constitutes the first part of Linear Regression Analysis, which aims at obtaining a linear
relation between two arrays of values (one dependent, the other independent), given these values as the
only available data. The relation obtained is of the type:

dependent value = a + b * independent value
The second part of the relation, the slope coefficient Beta (= b) is calculated by the DS Lab function
Beta.

The Alpha function is a basic tool of stock market analysis. Given a securitys quotations as a dependent
array and a market index representing the sector or market segment of the security as an independent
array, the function calculates the Alpha index of the security (Equity Alpha).

The alpha index represents the intersection of the regression line with the y axis. In the case of a security,
the security price and index values values are passed to the function by specifying two arrays of values
contained in two connected elements (or two parts of the same connected element, e.g. a table). The
array notation must be in brackets.

The array must contain a number of values equal to that specified in the number of observations
argument; these values can be assigned a zero value. The two arrays must correspond; for example, the
third value of the Bond array represents the quotation for the day on which the index value is represented
by the third value of the Index array.

Thus the argument connected element containing dependent array [array notation] might contain:

Bond [1:24]

while the argument connected element containing independent array [array notation] could contain the
following reference with the same number of values:

Index [1:24]

See Also

Beta, CorrelationCoefficient, StandardErrorOfBeta, StandardErrorOfRegression, Trend1, Trend2,
Trend3

Example

These are the latest closing prices of a share and the values of a hypothetical index for the same period:
Share A (dep.) Index (indep.)

311.850 37.125
312.600 37.000
309.140 35.500
307.570 35.875
310.490 36.750

We want to know the linear relation between the two arrays of values. This can be done by the following
script:

Alpha(
values 1[R2C2:R6C2],
values 1[R2C3:R6C3])

The Alpha constant has the value 222.06189.

APVNumberOfCashFlows - Function

Description

Calculates the Number of Cash Flows occurring at regular intervals with a fixed interest rate and
increasing from period to period by a fixed percentage factor, starting from a given present value.

Syntax

number_of_payments = APVNumberOfCashFlows(
present_value,
payment_period,
payment_amount,
annual_interest_rate,
compounding_period,
payment_timing,
short_period_option,
payment_growth_rate)

Returns

The number of payments.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#APV) and one of the following numbers:
/1 payment amount, present value or interest rate is not valid;
/2 timing constant is not valid;
/3 short period option is not valid;
/4 payment or compounding period is out of range;
/9 the iteration process gave rise to an out of range value;
/10 the maximum number of iterations was exceeded without converging on a value for the number of

payments.

Comments

This function calculates the number of cash flows necessary to compensate in the future for a present
value at a fixed interest rate (a typical example would be the number of payments needed to pay off a
loan).

Unlike the standard function PVNumberOfCashFlows, a percentage increase in the payment amount
may be specified, so as to represent cash flows which are index-linked or vary by a fixed percentage.

The percentage increase in the deposits takes place annually, so that all the cash flows in a given year
are the same.

The payment amount after y years is given by the following formula:

payment(y) = payment(0) * (1+rate_of_increase) y
where payment(0) is the payment amount argument, representing the amount for the first year.

The number of payments returned is always a whole number. In practice this number will be the largest
number of periods which can be sustained with the specified amount: another period would require
greater capital (present value).

This function is iterative. The iteration process terminates when a value with an error of less than one-
millionth is obtained or when more than 100 iterations have been performed. In the latter case the error
value #APV/10 is returned.

See Also

APVPresentValueIncreasingCashFlows, APVPresentValueVariableCashFlows,
APVPresentValueVariableRates, APVRateOfReturnIncreasingCashFlows,
APVRateOfReturnVariableCashFlows, APVSizeOfCashFlows, PVNumberOfCashFlows,
PVPresentValue, PVPresentValueDeferredCashFlows, PVPresentValueOfFutureValue,
PVSizeOfCashFlows, PVSizeOfDeferredCashFlows

Example

We want to find the number of increasing withdrawals which can be made, given a sum of $250,000
invested at a rate of 9%. The withdrawals are monthly and for the first year amount to $1,800 each. In
subsequent years they increase by 6% per year. The interest is compounded twice a year.

present_value = 250000
payment_period = MONTHLY
payment_amount = 1800
annual_interest_rate = 0.09
compounding_period = SEMIANNUAL
payment_timing = ORDNRY
short_period_option = CMPND
payment_growth_rate = 0.06
APVNumberOfCashFlows(

present_value,
payment_period,
payment_amount,
annual_interest_rate,
compounding_period,
payment_timing,
short_period_option,
payment_growth_rate)

The number of withdrawals which can be made is 177.

APVPresentValueIncreasingCashFlows - Function

Description

Calculates the Present Value of a series of payments occurring at fixed intervals, with a constant interest
rate and payments increasing at each step by a given percentage.

Syntax

present_value = APVPresentValueIncreasingCashFlows(
number_of_payments,
payment_period,
annual_interest_rate,

 payment_amount,
payment_timing,
short_period_option,
compounding_period,
payment_growth_rate)

Returns

The function returns the present value of the series of payments.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#APV) and one of the following numbers:
/1 number of payments, interest rate, rate of increase or payment amount is not valid;
/2 timing constant is not valid;
/3 short period option is not valid;
/4 payment or compounding period is out of range;
/9 the calculation gave rise to an out of range value.

Comments

This function calculates the present value of a number of cash flows which take place in the future. Unlike
the standard function PVPresentValue, it is possible to specify a rate of increase for the series of
payments, so as to represent cash flows which are index-linked or vary by a fixed percentage.

The increase in the deposits takes place annually, so that all the cash flows in a given year are the same.
The rate of increase can be negative to allow representation of payments decreasing by a constant
percentage.

The payment amount after y years is given by the following formula:

payment(y) = payment(0) * (1+growth_rate) y
where payment(0) is the payment amount argument, representing the amount for the first year.

See Also

APVNumberOfCashFlows, APVPresentValueVariableCashFlows, APVPresentValueVariableRates,
APVRateOfReturnIncreasingCashFlows, APVRateOfReturnVariableCashFlows,
APVSizeOfCashFlows, PVNumberOfCashFlows, PVPresentValue,
PVPresentValueDeferredCashFlows, PVPresentValueOfFutureValue, PVSizeOfCashFlows,
PVSizeOfDeferredCashFlows

Example

We want to calculate the value of a business by calculating the present value of a series of cash flows,
which it is assumed will take place monthly for the next 10 years. They amount to $34,000 monthly in the
first year with an annual growth rate of 7% for the following years. The interest rate used in this
calculation is the prime rate, assumed to be 14%.

number_of_payments = 10 * 12
payment_period = MONTHLY
annual_interest_rate = 0.14
payment_amount = 34000
payment_timing = ADUE
short_period_option = CMPND
compounding_period = MONTHLY
payment_growth_rate = 0.07
APVPresentValueIncreasingCashFlows(

number_of_payments,
payment_period,
annual_interest_rate,
payment_amount,
payment_timing,
short_period_option,
compounding_period,
payment_growth_rate)

The present value of the business is $2,835,533.13.

APVPresentValueVariableCashFlows - Function

Description

Calculates the Present Value of a series of payments of variable amounts occurring at regular intervals
with a constant interest rate.

Syntax

present_value = APVPresentValueVariableCashFlows(
payment_period,
annual_interest_rate,
connected element containing cash flows [array notation],
payment_timing,
short_period_option,
compounding_period)

The brackets after the connected element containing cash flows argument are in bold type to emphasize
that their use is compulsory with this function.

Returns

The present value of the series of payments.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#APV) and one of the following numbers:
/1 number of payments or interest rate is not valid;
/2 timing constant is not valid;
/3 short period option is not valid;
/4 payment or compounding period is out of range;
/9 the calculation gave rise to an out of range value.

Comments

This function calculates the present value of a series of cash flows which take place in the future. Unlike
the standard function PVPresentValue, this function allows a different value cash flow for each payment
period.

The sequence of cash flows is passed to the function by specifying the name of the connected element.
The array notation must be in brackets. For example, if the connected element is a table called Cash
Flows, the array can be written like this:

Cash Flows [R1C1:R1C24]

See Also

APVNumberOfCashFlows, APVPresentValueIncreasingCashFlows,
APVPresentValueVariableRates, APVRateOfReturnIncreasingCashFlows,
APVRateOfReturnVariableCashFlows, APVSizeOfCashFlows, PVNumberOfCashFlows,
PVPresentValue, PVPresentValueDeferredCashFlows, PVPresentValueOfFutureValue,
PVSizeOfCashFlows, PVSizeOfDeferredCashFlows

Example

We wish to determine the Net Present Value (NPV) of an investment which is expected to yield 13 cash
flows at 6-monthly intervals. The discount rate is assumed to be 12%.

An element containing the series of the 13 cash flows must be connected to the variable containing this
function.

For example, we can use the first 13 values of a series called Cash Flows containing the following values:
Period 1 -400
Period 2 -400
Period 3 -275
Period 4 150
Period 5 150
Period 6 150
Period 7 150
Period 8 150
Period 9 150
Period 10 150
Period 11 150
Period 12 150
Period 13 300

The script will be as follows:
payment_period = QUARTERLY
annual_interest_rate = 0.12
payment_timing = ADUE
short_period_option = CMPND
compounding_period = ANNUAL
APVPresentValueVariableCashFlows(

payment_period,
annual_interest_rate,
cash flows 1 [1:13],
payment_timing,
short_period_option,
compounding_period)

The Net Present Value is $274.96.

APVPresentValueVariableRates - Function

Description

Calculates the Present Value of a series of payments of varying amounts occurring at fixed intervals with
a variable interest rate.

Syntax

present_value = APVPresentValueVariableRates(
payment_period,
connected element containing interest rates [array notation],
connected element containing cash flows [array notation],
payment_timing,
compounding_period)

The brackets after the connected element containing interest rates and connected element containing
cash flows arguments are in bold type to emphasize that their use is compulsory with this function.

Returns

The function returns the present value of the series of payments.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#APV) and one of the following numbers:
/1 number of payments is not valid;
/2 timing constant is not valid;
/3 short period option is not valid;
/4 payment or compounding period is out of range;
/9 the calculation gave rise to an out of range value;
/11 interest rate not valid.

Comments

This function calculates the present value of a series of cash flows which take place in the future. Unlike
the standard function PVPresentValue, this function allows changes in the value of the cash flows and in
the interest rate for each payment period.

The cash flow and interest rate values are passed to the function by specifying two arrays of values
contained in two connected elements (or two parts of the same connected element, e.g. a table). The
array notation must be in brackets. The two arrays must correspond: for example, the third payment is
subject to the interest rate given by the third value of the Interest Rates array.

The only limitation on variability is that interest rates can change only when a deposit period and an
interest calculation period finish at the same time. For example, if the interest calculation is QUARTERLY
while the payment period is MONTHLY, the interest array will have to repeat the same rate for three
payment periods, since the payment period and the interest calculation period finish at the same time only
at the end of every quarter.

For example, let us suppose that a table named Payments and Interest Rates, containing the payments in
the first row and the corresponding interest rates in the second, is connected to the function. In this case
both the arrays are contained in the same connected element.

The connected element containing cash flows [array notation] argument could contain the following
reference:

Payments and Interest Rates [R1C1:R1C24]

while the connected element containing interest rates [array notation] argument could contain:

Payments and Interest Rates [R2C1:R2C24]

See Also

APVNumberOfCashFlows, APVPresentValueIncreasingCashFlows,
APVPresentValueVariableCashFlows, APVRateOfReturnIncreasingCashFlows,
APVRateOfReturnVariableCashFlows, APVSizeOfCashFlows, PVNumberOfCashFlows,
PVPresentValue, PVPresentValueDeferredCashFlows, PVPresentValueOfFutureValue,
PVSizeOfCashFlows, PVSizeOfDeferredCashFlows

Example

We want to find the present value of a series of varying cash flows at a variable interest rate. An initial
investment is foreseen which involves cash expenditure in the initial period; then a constant flow of
income, and at the end the repayment of the initial capital. The total duration is 5 years, or 20 quarterly
periods, plus the initial period, giving a total of 21 periods.

We need to use array notation with one or two connected elements connected to the variable containing
this function.

For example, two series named Cash Flows and Interest Rates can be connected, containing the
following values:

 CASH FLOWS INTEREST RATES

First Period -1,250,000 0.12

Periods 2 to 20 +25,000 0.12

Period 21 +1,500,000 0.12

The script will be as follows:

payment_period = QUARTERLY
payment_timing = ADUE
compounding_period = ANNUAL

APVPresentValueVariableRates(
payment_period,
Interest Rates[1:21],
Cash Flows 2 [1:21],
payment_timing,
compounding_period)

The Present Value is negative, amounting to $-22,543.51.

APVRateOfReturnIncreasingCashFlows - Function

Description

Calculates the Internal Rate of Return required to obtain a cash flow which increases from period to
period by a constant percentage factor, starting from a given present value.

Syntax

rate_of_return = APVRateOfReturnIncreasingCashFlows(
present_value,
payment_period,
payment_amount,
number_of_payments,
compounding_period,
short_period_option,
payment_timing,
payment_growth_rate)

Returns

The function returns the internal rate of return needed to produce the specified present value from a
series of payments.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#APV) and one of the following numbers:
/1 number of payments, payment amount or growth rate is not valid;
/2 timing constant is not valid;
/3 short period option is not valid;
/4 payment or compounding period is out of range;
/7 number of payments is not sufficient;
/9 the iteration process gave rise to an out of range value;
/10 the maximum number of iterations was exceeded without converging on a value for the rate of

return.

Comments

This function can be used to establish the viability of projects or to evaluate the risk involved in reaching
given objectives.

As compared to the standard function PVRateOfReturn, it allows a fixed rate of increase in the cash
flows.

The increase in the payments takes place annually, so that all the cash flows in a given year are the
same.

The payment amount after y years is given by the following formula:

payment(y) = payment(0) * (1+growth_rate) y
where payment(0) is the Payment Amount argument, representing the amount for the first year.

This function is iterative. The iteration process terminates when a value with an error of less than one-
millionth is obtained or when more than 100 iterations have been performed. In the latter case the error
value #APV/10 is returned.

To obtain the standard Internal Rate of Return (IRR), write the script assigning the value 0 (zero) to the
present value argument.

The IRR is the discount rate which makes the Net Present Value (NPV) of the cash flows equal to zero.
This is a widely used tool, but it must be used with caution, as it has theoretical limitations which need to
be taken into account.

For example, two quite different cash flows can have the same IRR:
-100, +150 IRR = .50 (50%)
+100, -150 IRR = .50 (50%)

Alternatively, the same cash flow can have different IRRs:

-400, +2500, +2500 IRR = .25 (25%) and IRR = 4 (400%).

The function only returns values below 1 (100%).

See Also

APVNumberOfCashFlows, APVPresentValueIncreasingCashFlows,
APVPresentValueVariableCashFlows, APVPresentValueVariableRates,
APVRateOfReturnVariableCashFlows, APVSizeOfCashFlows, PVNumberOfCashFlows,
PVPresentValue, PVPresentValueDeferredCashFlows, PVPresentValueOfFutureValue,
PVSizeOfCashFlows, PVSizeOfDeferredCashFlows

Example

We want to find the internal rate of return of a series of cash flows starting from $750 in the first year,
increasing each year by 5.5%. The present value of the series of payments is calculated at $100,000. The
payments take place monthly for a total of 20 years.

The script will be as follows:

present_value = 100000
payment_period = MONTHLY
payment_amount = 750
number_of_payments = 20*12
compounding_period = DAILY
short_period_option = CMPND
payment_timing = ORDNRY
payment_growth_rate = 0.055
APVRateOfReturnIncreasingCashFlows(

present_value,
payment_period,
payment_amount,
number_of_payments,
compounding_period,
short_period_option,
payment_timing,
payment_growth_rate)

The internal rate of return is 11.55%.

APVRateOfReturnVariableCashFlows - Function

Description

Calculates the Internal Rate of Return required to obtain a cash flow of the specified size, starting from a
given present value.

Syntax

interest_rate = APVRateOfReturnVariableCashFlows(
present_value,
payment_period,
connected element containing cash flows [array notation],
starting_rate,
payment_timing,
short_period_option;
compounding_period)

The brackets after the connected element containing cash flows argument are in bold type to emphasize
that their use is compulsory with this function.

Returns

The function returns the internal rate of return which brings the series of payments to the specified
present value.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#APV) and one of the following numbers:
/1 present value is not valid;
/2 timing constant is not valid;
/3 short period option is not valid;
/4 payment or compounding period is out of range;
/7 number of values in the series of cash flows is not sufficient;
/9 the iteration process gave rise to an out of range value;
/10 the maximum number of iterations was exceeded without converging on a value for the rate of

return.

Comments

This function can be used to establish the viability of projects or to evaluate the risk involved in reaching
given objectives.

Unlike the standard function PVRateOfReturn, the cash flows can vary for each payment period.

This function is iterative. The iteration process terminates when a value with an error of less than one-
millionth is obtained or when more than 100 iterations have been performed. In the latter case the error
value #APV/10 is returned.

To facilitate calculation of the correct rate of return, one argument contains the starting value for the
iteration. If no value is specified, this argument defaults to 0.10 (10%).

To obtain the standard Internal Rate of Return (IRR), write the script assigning the value 0 (zero) to the
present value argument.

The IRR is the discount rate which makes the Net Present Value (NPV) of the cash flows equal to zero.

The IRR is a widely used tool, but it must be used with caution, as it has theoretical limitations which need

to be taken into account.

For example, two quite different cash flows can have the same IRR:

-100, +150 IRR = .50 (50%)
+100, -150 IRR = .50 (50%)

Alternatively, the same cash flow can have different IRRs:

-400, +2500, +2500 IRR = .25 (25%) and IRR = 4 (400%).

The function only returns values below 1 (100%).

The sequence of cash flows must be passed to the function by specifying the name of the connected
element. The array notation must be in brackets.

For example, if the connected element is a table named Cash Flows, the array can be written like this:

Cash Flows [R1C1:R1C24]

See Also

APVNumberOfCashFlows, APVPresentValueIncreasingCashFlows,
APVPresentValueVariableCashFlows, APVPresentValueVariableRates,
APVRateOfReturnIncreasingCashFlows, APVSizeOfCashFlows, PVNumberOfCashFlows,
PVPresentValue, PVPresentValueDeferredCashFlows, PVPresentValueOfFutureValue,
PVSizeOfCashFlows, PVSizeOfDeferredCashFlows

Example

We want to find the internal rate of return (the rate that will yield zero present value) of a cash flow which
occurs monthly for a total of 13 periods. The interest rate is expected to be 12%.

An element containing the values of the 13 cash flows must be connected to the variable containing this
function.

For example, we can use the first 13 values of a series called Cash Flows 3 containing the following
values:

Period 1 -400
Period 2 -400
Period 3 -275
Period 4 150
Period 5 150
Period 6 150
Period 7 150
Period 8 150
Period 9 150
Period 10 150
Period 11 150
Period 12 150
Period 13 200

The script will be as follows:

present_value = 0
payment_period = QUARTERLY
starting_rate = 0.10
payment_timing = ADUE
short_period_option = CMPND
compounding_period = ANNUAL
APVRateOfReturnVariableCashFlows(

present_value,
payment_period,
Cash Flows 3 [1:13],
starting_rate,
payment_timing,
short_period_option,
compounding_period)

The rate found is 25.09%.

APVSizeOfCashFlows - Function

Description

Calculates the initial Size of Cash Flow needed to obtain a given present value by means of a series of
cash flows at regular intervals, given a constant interest rate and a regular fixed percentage increase in
the cash flow amount.

Syntax

size_of_first_payment = APVSizeOfCashFlows(
number_of_payments,
payment_period,
annual_interest_rate,
present_value,
payment_timing,
short_period_option,
compounding_period,
rate_of_increase_in_payments)

Returns

The size of the first cash flow.

If the rate of increase in payments is 0 (zero), this will be the value of all cash flows; otherwise, the size of
payments will remain constant during each year, and will vary from year to year according to the following
rule:

- for the first year the returned value applies;

- for all subsequent years, the amount can be calculated by the following formula, which returns the
amount after y years (payment(y)):

payment(y) = payment(0) * (1 + rate_of_increase) y
where payment(0) is the returned value.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#APV) and one of the following numbers:
/1 present value, interest rate, rate of increase or number of payments is not valid;
/2 timing constant is not valid;
/3 short period option is not valid;
/4 payment or compounding period is out of range;
/7 number of payments insufficient;
/9 the iteration process gave rise to an out of range value;
/10 the maximum number of iterations was exceeded without converging on a value for the number of

deposits.

Comments

This function is used to find what annuity a client can afford, given the sum available for investment. It can
also be used to calculate the payment plan on a mortgage, once the value of the mortgage and the
repayment period are known. Unlike the standard PVSizeOfCashFlows function, a rate of increase in the
deposit amount may be specified so as to represent cash flows which are index- linked or vary by a fixed
percentage.

This function is iterative. The iteration process terminates when a value with an error of less than one-

millionth is obtained or when more than 100 iterations have been made. In the latter case the error value
#AFV/10 is returned.

See Also

APVNumberOfCashFlows, APVPresentValueIncreasingCashFlows,
APVPresentValueVariableCashFlows, APVPresentValueVariableRates,
APVRateOfReturnIncreasingCashFlows, APVRateOfReturnVariableCashFlows,
PVNumberOfCashFlows, PVPresentValue, PVPresentValueDeferredCashFlows,
PVPresentValueOfFutureValue, PVSizeOfCashFlows, PVSizeOfDeferredCashFlows

Example

We wish to find the size of the index-linked payments needed to repay a mortgage of $100,000 at an
interest rate of 14.75% compounded twice yearly. The payments take place twice yearly over 10 years
and increase each year by 6.5%.

number_of_payments = 10 * 2
payment_period = SEMIANNUAL
annual_interest_rate = 0.1475
present_value = 100000
payment_timing = ADUE
short_period_option = CMPND
compounding_period = SEMIANNUAL
rate_of_increase = 0.065
APVSizeOfCashFlows(

number_of_payments,
payment_period,
annual_interest_rate,
present_value,
payment_timing,
short_period_option,
compounding_period,
rate_of_increase)

Each of the payments in the first year will be $7,210.82.

ArcCos - Function

Description

Calculates the arc-cosine.

Syntax

arc-cosine = ArcCos(expression)

Returns

The arc-cosine in radians.

If the argument is less than -1 or greater than 1, the function returns the error value #ARCCOS/-1,1.

See Also

Sin, Tan, Cos, ArcSin, ArcTan, SinH, CosH, TanH

Example

The following script:

ArcCos(0)

returns the value 1.5708 (radians).

ArcSin - Function

Description

Calculates the arcsine.

Syntax

arcsine = ArcSin(expression)

Returns

The arcsine in radians.

If the argument is less than -1 or greater than 1, the function returns the error value #ARCSIN/-1,1.

See Also

Sin, Tan, Cos, ArcCos, ArcTan, SinH, CosH, TanH

Example

The following script:

ArcSin(0)

returns the value 0 (radians).

ArcTan - Function

Description

Calculates the arctangent.

Syntax

arctangent = ArcTan(expression)

Returns

The arctangent in radians.

See Also

Sin, Tan, Cos, ArcSin, ArcCos, SinH, CosH, TanH

Example

The following script:

ArcTan(0)

returns the value 0 (radians).

Assignment - Instruction

Description

Assigns a value to a local variable. If it is the first time that the variable appears in the script, it is also
defined.

Syntax

local_variable = expression

Returns

The assignment instruction has no return value. An assignment at the end of a script is meaningless, thus
the variable is assigned the value 0.

Comments

The name of a local variable follows the normal programming language syntax. It must thus begin with an
alphabetical character and contain only alphanumeric characters or the _(underscore) character. Only the
first 15 characters are significant in distinguishing one local variable from another.

Example

To assign to a variable named Total_Credit the sum of three credits:

total_credit = credit1 + credit2 + credit3

Beta - Function

Description

Calculates the Beta coefficient (b) of two arrays of values, that is the slope of the regression line of the
two array.

Syntax

beta = Beta(
connected element containing dependent array [array notation],
connected element containing independent array [array notation])

The brackets after the connected element containing array arguments are in bold type to emphasize that
their use is compulsory with this function.

Returns

The beta index.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#STAT) and one of the following numbers:
/1 number of observations less than 3;
/9 calculation has given rise to an out of range value;
/18 division by zero.

Comments

This function constitutes the second part of Linear Regression Analysis aimed at obtaining a linear
relation between two arrays of values (one dependent, the other independent), given these values as the
only available data. The relation is as follows:

dependent value = a + b * independent value

The Beta function is a basic tool of stock market analysis. Given a securitys quotations as a dependent
array and a market index representing the sector or market segment of the security as an independent
array, the function calculates the Beta index of the security (Equity Beta).

The beta index represents the slope of the regression line: it expresses the change in the security price
for a unit change in the index. Beta values greater than 1 or less than -1 represent securities tending to
react to factors affecting the index with proportionately greater volatility.

In the case of a security, the values for the security price and the index are passed to the function by
specifying two arrays of values contained in two connected elements (or two parts of the same connected
element, e.g. a table). The array notation must be in brackets. The two arrays must correspond; for
example, the third value of the Bond array represents the quotation for the day on which the index value
is represented by the third value of the Index array.

Thus the connected element containing dependent array [array notation] argument might contain the
following reference:

Bond [1:24]

while the connected element containing independent series [array notation] argument could contain the
following reference with the same number of values:

Index [1:24]

See Also

Alpha, CorrelationCoefficient, StandardErrorOfRegression, Trend1, Trend2, Trend3

Example

Given the latest closing values of a share and the value of a hypothetical index for the same period:
 Share A(dep.) Index (indep.)

311.850 37.125
312.600 37.000
309.140 35.500
307.570 35.875
310.490 36.750

we want to know the linear relation between the two arrays of values.

Beta(
values 1[R2C2:R6C2],
values 1[R2C3:R6C3])

The Beta slope coefficient is 2.42162.

BondAccruedInterest - Function

Description

Calculates the Accrued Interest of a bond with reference to a specified purchase date.

Syntax

accrued_interest = BondAccruedInterest(
face_value,
coupon_rate,
coupon_payment_period,
maturity_date,
purchase_date,
calendar_option)

Returns

The accrued interest of the bond.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#BOND) and one of the following numbers:
/4 compounding period is out of range;
/14 either the maturity or purchase date is invalid;
/15 the coupon rate is less than 0 (zero) or greater than 1 (one);
/16 the coupon payment period is more frequent than MONTHLY or less frequent than ANNUAL.

Comments

This function calculates the accrued interest of a bond with reference to a specified purchase date. The
accrued interest is one of the pricing components for a bond, as can be seen from the following formula:

bond cost = price * face value + accrued interest

The calendar option argument must take one of the following two values:

- C360 to use the 360/30-day convention, which stipulates a 360-day year and a 30-day month;

- C365 for exact year and month length.

This function assumes that the maturity date is also the coupon payment date.

See Also

BondDuration, BondPrice, BondCost, BondPriceEstimate, BondCostEstimate, BondSensitivity,
BondYieldToMaturity

Example

To find the accrued interest of a bond maturing on December 9, 1999 with the following characteristics:

face_value = 1000
coupon_rate = 0.0625
coupon_payment_period = SEMIANNUAL

maturity_date = Date("December 9 1999")
purchase_date = Date("July 4 1992")
calendar_option = C360
BondAccruedInterest(

face_value,
coupon_rate,
coupon_payment_period,
maturity_date,
purchase_date,
calendar_option)

The accrued interest amounts to $4.34.

BondCost - Function

Description

Calculates the cost of a bond with reference to specified maturity and purchase dates.

Syntax

bond_cost = BondCost(
face_value,
yield_to_maturity,
compounding_period,
coupon_rate,
coupon_payment_period,
maturity_date,
purchase_date,
calendar_option)

Returns

The cost of the bond.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#BOND) and one of the following numbers:
/1 yield is not valid;
/4 compounding period is out of range;
/14 either the maturity or purchase date is invalid;
/15 the coupon rate is less than 0 (zero) or greater than 1 (one);
/16 the coupon payment period is more frequent than MONTHLY or less frequent than ANNUAL.

Comments

This function calculates the cost of a bond with reference to a specific purchase date. The cost
summarizes all the pricing components for a bond as shown in the following formula:

bond cost = price * face value + accrued interest
The calendar option argument must take one of the following two values:

- C360 to use the 360/30-day convention, which stipulates a 360-day year and a 30-day month;

- C365 for exact year and month length.

This function assumes that the maturity date is also the coupon payment date.

See Also

BondDuration, BondPrice, BondAccruedInterest, BondPriceEstimate, BondCostEstimate,
BondSensitivity, BondYieldToMaturity

Example

To find the cost of a bond maturing on December 9, 1999 with the following characteristics:

face_value = 1000
yield_to_maturity = 0.12

compounding_period = SEMIANNUAL
coupon_rate = 0.0625
coupon_payment_period = SEMIANNUAL
maturity_date = Date("December 9 1992")
purchase_date = Date("July 4 1992")
calendar_option = C360
BondCost(

face_value,
yield_to_maturity,
compounding_period,
coupon_rate,
coupon_payment_period,
maturity_date,
purchase_date,
calendar_option)

The bond cost with reference to the given date is $980.46.

BondCostEstimate - Function

Description

Calculates the estimated cost of a bond with reference to a duration of a specified number of periods.

Syntax

bond_cost = BondCostEstimate(
face_value,
yield_to_maturity,
compounding_period,
coupon_rate,
coupon_payment_period,
number_of_periods)

Returns

The cost of the bond.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#BOND) and one of the following numbers:
/1 yield is not valid;
/4 compounding period is out of range;
/14 either the maturity or purchase date is invalid;
/15 the coupon rate is less than 0 (zero) or greater than 1 (one);
/16 the coupon payment period is more frequent than MONTHLY or less frequent than ANNUAL.

Comments

This function calculates an estimate of the bond cost based on commonly available information. The
compounding period and coupon payment period will usually be set to SEMIANNUAL.

The margin of error of the estimate will be greater for short term bonds.

See Also

BondDuration, BondPrice, BondCost, BondAccruedInterest, BondPriceEstimate, BondSensitivity,
BondYieldToMaturity

Example

To estimate the cost of a bond which matures in 1999 with the following characteristics:

face_value = 1000
yield_to_maturity = 0.12
compounding_period = SEMIANNUAL
coupon_rate = 0.0625
coupon_payment_period = SEMIANNUAL
number_of_periods = (1999 - 1992) * 2
BondCostEstimate(

face_value,
yield_to_maturity,
compounding_period,

coupon_rate,
coupon_payment_period,
number_of_periods)

The estimated bond cost is $732.77.

BondDuration - Function

Description

Calculates the duration of a bond.

Syntax

bond_duration = BondDuration(
yield_to_maturity,
compounding_period,
coupon_rate,
coupon_payment_period,
number_of_payments)

Returns

The duration of the bond in years.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#BOND) and one of the following numbers:
/1 yield is not valid;
/4 compounding period is out of range;
/9 impossible to price the bond with the specified arguments;
/14 number of payments is less than 1;
/15 the coupon rate is less than 0 (zero) or greater than 1 (one);
/16 the coupon payment period is more frequent than MONTHLY or less frequent than ANNUAL.

Comments

This function calculates the duration of a bond assuming the discount rate and the yield to maturity are
equal (Macaulays Duration).

See Also

BondPrice, BondCost, BondAccruedInterest, BondPriceEstimate, BondCostEstimate,
BondSensitivity, BondYieldToMaturity

Example

To find the duration of a bond which matures in 1999 with the following characteristics:

yield_to_maturity = 0.12
compounding_period = SEMIANNUAL
coupon_rate = 0.0625
coupon_payment_period = SEMIANNUAL
number_of_payments = (1999 - 1992) * 2
BondDuration(

yield_to_maturity,
compounding_period,
coupon_rate,
coupon_payment_period,
number_of_payments)

The duration of the bond is 5.53 years.

BondPrice - Function

Description

Calculates the price of a bond with reference to a specified maturity and purchase date.

Syntax

bond_price = BondPrice(
yield_to_maturity,
compounding_period,
coupon_rate,
coupon_payment_period,
maturity_date,
purchase_date,
calendar_option)

Returns

The price of the bond as a percentage of its face value.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#BOND) and one of the following numbers:
/1 yield is not valid;
/4 compounding period is out of range;
/14 either maturity or purchase date is invalid;
/15 the coupon rate is less than 0 (zero) or greater than 1 (one);
/16 the coupon payment period is more frequent than MONTHLY or less frequent than ANNUAL.

Comments

This function calculates the price of a bond as a percentage of its face value. The price is only one of the
pricing components for a bond, as is shown by the following formula:

bond cost = price * face value + accrued interest

The calendar option argument must take one of the following two values:

- C360 to use the 360/30-day convention, which stipulates a 360-day year and a 30-day month;

- C365 for exact year and month length.

This function assumes that the maturity date is also the coupon payment date.

See Also

BondDuration, BondCost, BondAccruedInterest, BondPriceEstimate, BondCostEstimate,
BondSensitivity, BondYieldToMaturity

Example

To find the price of a bond which matures on 9 December 1999 with the following characteristics:

yield_to_maturity = 0.12
compounding_period = SEMIANNUAL

coupon_rate = 0.0625
coupon_payment_period = SEMIANNUAL
maturity_date = Date("December 9 1999")
purchase_date = Date("July 4 1992")
calendar_option = C360
BondPrice(

yield_to_maturity,
compounding_period,
coupon_rate,
coupon_payment_period,
maturity_date,
purchase_date,
calendar_option)

The bond price is 72.22% of its face value.

BondPriceEstimate - Function

Description

Calculates an estimate of the price of a bond with reference to a specified number of periods.

Syntax

bondprice = BondPriceEstimate(
yield_to_maturity,
compounding_period,
coupon_rate,
coupon_payment_period,
number_of_periods)

Returns

The price of the bond in standard format.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#BOND) and one of the following numbers:
/1 yield is not valid;
/4 compounding period is out of range;
/14 either maturity or purchase date is invalid;
/15 the coupon rate is less than 0 (zero) or greater than 1 (one);
/16 the coupon payment period is more frequent than MONTHLY or less frequent than ANNUAL.

Comments

This function calculates an estimate of the price of a bond based on commonly available information. The
compounding period and coupon payment period will normally be set to SEMIANNUAL.

The bond price is measured as a percentage of the face value. The inaccuracy of the estimate will be
greater for short term bonds.

See Also

BondDuration, BondPrice, BondCost, BondAccruedInterest, BondCostEstimate, BondSensitivity,
BondYieldToMaturity

Example

To estimate the price of a bond maturing on December 9, 1999 with the following characteristics:

yield_to_maturity = 0.12
compounding_period = SEMIANNUAL
coupon_rate = 0.0625
coupon_payment_period = SEMIANNUAL
number_of_periods = (1999 - 1992) * 2
BondPriceEstimate(

yield_to_maturity,
compounding_period,
coupon_rate,
coupon_payment_period,

number_of_periods)

The estimated bond price is $73.28% of its face value.

BondSensitivity - Function

Description

Calculates the sensitivity of a bonds price to changes in its yield.

 Syntax

bond_sensitivity = BondSensitivity(
yield_to_maturity,
compounding_period,
coupon_rate,
change_in_yield,
coupon_payment_period,
maturity_date,
purchase_date,
calendar_option)

Returns

The percentage change in the price of the bond.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#BOND) and one of the following numbers:
/1 yield is not valid or the change is greater than 1 or less than -1;
/4 compounding period is out of range;
/14 either maturity or purchase date is invalid;
/15 the coupon rate is less than 0 (zero) or greater than 1 (one);
/16 the coupon payment period is more frequent than MONTHLY or less frequent than ANNUAL.

Comments

For this function, the yield to maturity (YTM) is assumed to be the relative rate at which the bond is a
competitive investment.

The function can be used for risk analysis by calculating the effect of a change in the yield to maturity on
the bond price.

The calendar option argument must take one of the following two values:

- C360 to use the 360/30-day convention, which stipulates a 360-day year and a 30-day month;

- C365 for exact year and month length.

This function assumes that the maturity date is also the coupon payment date.

See Also

BondDuration, BondPrice, BondCost, BondAccruedInterest, BondPriceEstimate,
BondCostEstimate, BondYieldToMaturity

Example

To find the bond sensitivity given a hypothetical increase in the yield to maturity of 1.75%:

yield_to_maturity = 0.12

compounding_period = SEMIANNUAL
coupon_rate = 0.0625
change_in_yield = 0.0175/0.12
coupon_payment_period = SEMIANNUAL
maturity_date = Date("June 15 2005")
purchase_date = Date("September 9 1990")
calendar_option = C360
BondSensitivity(

yield_to_maturity,
compounding_period,
coupon_rate,
change_in_yield,
coupon_payment_period,
maturity_date,
purchase_date,
calendar_option)

This script returns a value of -0.125: that is, if the yield to maturity changes from 11 to 12%, the bond
price decreases by 12.5%.

BondYieldToMaturity - Function

Description

Calculates the Yield To Maturity (YTM) of a bond.

Syntax

yield_to_maturity = BondYieldToMaturity(
coupon_rate,
price,
compounding_period,
coupon_payment_period,
maturity_date,
purchase_date,
calendar_option)

Returns

The yield to maturity of a bond.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#BOND) and one of the following numbers:
/4 compounding period is out of range;
/9 values out of range during approximations;
/10 maximum number of approximations without reaching a yield to maturity value has been exceeded;
/14 either maturity or purchase date is invalid;
/15 the coupon rate is less than 0 (zero) or greater than 1 (one);
/16 the coupon payment period is more frequent than MONTHLY or less frequent than ANNUAL.

Comments

This function calculates the yield to maturity (YTM) of a bond.

This is the standard method for evaluating and pricing bonds, enabling comparison of a bond with other
investments.

The calendar option argument must take one of the following two values:

- C360 to use the 360/30-day convention, which stipulates a 360-day year and a 30-day month;

- C365 for exact year and month length.

This function assumes that the maturity date is also the coupon payment date.

See Also

BondDuration, BondPrice, BondCost, BondAccruedInterest, BondPriceEstimate,
BondCostEstimate, BondSensitivity

Example

To calculate the yield to maturity of a bond with the following characteristics:

coupon_rate = 0.0625
price = 98.50

compounding_period = DAILY
coupon_payment_period = SEMIANNUAL
maturity_date = Date("December 9 1999")
purchase_date = Date("July 4 1992")
calendar_option = C360
BondYieldToMaturity(

coupon_rate,
price,
compounding_period,
coupon_payment_period,
maturity_date,
purchase_date,
calendar_option)

The yield to maturity of the bond under these conditions is 6.4%.

CalculateFrom - Function

Description

Interrupts the simulation and restarts calculation from the specified step.

Syntax

CalculateFrom (step)

Returns

This function has no return value since it suspends the simulation, leaving the value of the variable for the
current step undefined (red traffic light).

Comments

The function CalculateFrom is used to suspend the simulation and restart it from a different step.

See Also

LoopTime

Example

We want to find the Number of Employees needed to produce a given annual Output. A model is built
containing as Input elements Output Target and Number of Employees.

In this example, Output is calculated by a logarithmic function in the script of the Output variable; this
variable could be replaced by a complex sub-model.

The variable called Test checks whether the calculated Output meets the Target. If not, the Number of
Employees is incremented by 1 and the simulation is run again from the start. The script of this variable is
as follows:

If SIMULATION AND TIME = LASTSTEP AND Output Target > Output
' increment number of employees and try again
Personnel = Request("CALCFROM.LAB" , "Number of Employees")
Poke ("CALCFROM.LAB" , "Number of Employees" , Personnel + 1)
CalculateFrom(1)

EndIf

The test is executed only during simulation (SIMULATION system variable) and only when the last step is
reached (TIME = LASTSTEP).

CorrelationCoefficient - Function

Description

Calculates the Correlation Coefficient of two arrays of values.

Syntax

correlation_coefficient = CorrelationCoefficient(
connected element containing dependent array [array notation]
connected element containing independent array [array notation])

The brackets after the connected element containing array arguments are in bold type to emphasize that
their use is compulsory with this function.

Returns

The correlation coefficient.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#STAT) and one of the following numbers:
/1 number of inputs less than 3;
/9 calculation has given rise to an out of range value;
/18 division by zero.

Comments

The correlation coefficient is used to assess the reliability of a regression. The closer this number is to +1
(direct correlation) or 1 (inverse correlation), the closer the relation between the two arrays of values is
considered to be and the greater the reliability of the regression for the prediction of future values.

This coefficient can be used in stock market analysis by passing it the quotations of a security as a
dependent array and a market index representing the sector or market segment of the security as an
independent array.

In the case of a security, the values for the security price and the index are passed to the function by
specifying two arrays of values contained in two connected elements (or two parts of the same connected
element, e.g. a table). The array notation must be in brackets. The two arrays must correspond; for
example, the third value of the Bond array represents its price on the day for which the index value is
represented by the third value of the Index array.

Thus the connected element containing dependent array [array notation] argument might contain the
following reference:

Bond [1:24]

while the connected element containing independent array [array notation] argument could contain the
following reference with the same number of values:

Index [1:24]

See Also

Alpha, Beta, StandardErrorOfBeta, StandardErrorOfRegression

Example

These are the latest closing prices of a share and the value of a hypothetical index for the same period:
Share A (dep.) Index (indep.)

311.850 37.125
312.600 37.000
309.140 35.500
307.570 35.875
310.490 36.750

To find the degree of correlation between the two arrays of values:

CorrelationCoefficient(
values 1[R2C2:R6C2],
values 1[R2C3:R6C3])

The Correlation Coefficient is 0.85947. Attempts to predict values of one array from the other using
regression analysis will therefore give reasonably accurate results.

Cos - Function

Description

Calculates the cosine of an angle in radians.

Syntax

cosine = Cos(expression)

Returns

The cosine of the angle.

Attempts to find the cosine of very large values may generate the error value #PLOSS representing a
partial loss of significance, or the error value #TLOSS representing a total loss of significance.

See Also

Sin, Tan, ArcSin, ArcCos, ArcTan, SinH, CosH, TanH

Example

The following script:

cos (PI)

returns the value -1, that is the cosine of the angle that measures radians.

CosH - Function

Description

Calculates the hyperbolic cosine.

Syntax

hyperbolic_cosine = CosH(expression)

Returns

The hyperbolic cosine.

See Also

Sin, Cos, Tan, ArcSin, ArcCos, ArcTan, SinH, TanH

Example

The following script:

cosH (0)

returns the value 1.

Date - Function

Description

Changes a date to internal format.

Syntax

internal_date = Date("external_date")

The quotation marks inside the parentheses are in bold type to emphasize that their use is compulsory
with this function.

Returns

The date in internal format.

If the argument is not a valid date, the function returns the error value #DATE.

Comments

The year in the external_date argument must be written in full (1992, not 92).
The month must be written in letters, not figures (July, not 7 or 07), but may be abbreviated to as many
characters as are required to identify the month unambiguously.

Within these constraints, the date will be correctly interpreted whether it is expressed in US form (month
GG YYYY) or European form (GG month YYYY).

See Also

SystemDate

Example

The scripts:

Date("September 15 1993")
Date("15 September 1993")
and:
Date("Sep 15 1993")

all return the value 19930915.

Day - Function

Description

Finds the day (1-31) of a date in internal format.

Syntax

day = Day(internal_date)

Returns

The number of the day.

If the internal_date argument does not represent a valid date, the error value #DAY is returned.

See Also

Week, Month, Year, DayWeek, DayYear

Example

If the simulation step is DAY, the system variable TIME contains the current day in internal format. To find
out which day of the month it is, the Day function can be used as follows:

Day(TIME)

DayWeek - Function

Description

Finds the day of the week (0 = Sunday, ...6 = Saturday) of a date in internal format.

Syntax

day = DayWeek(internal_date)

Returns

The number of the day of the week between 0 and 6 inclusive.

If the internal_date argument does not represent a valid date, the error value #DAYWEEK is returned.

See Also

Day, Week, Month, Year, DayYear

Example

If the simulation step is Day or Week, the system variable TIME contains the current day in internal
format. To find out which day of the week it is the DayWeek function can be used as follows:

DayWeek(TIME)

DayYear - Function

Description

Finds the day of the year (1-366) of a date in internal format.

Syntax

day = DayYear(internal_date)

Returns

The number of the day of the year.

If the internal_date argument does not represent a valid date, the error value #DAYYEAR is returned.

See Also

Day, Week, Month, Year, DayWeek

Example

If the simulation step is Day or Week, the system variable TIME contains the current day in internal
format. To find out which day of the year it is, the DayYear function can be used as follows:

DayYear(TIME)

Do Case ... EndCase - Instruction

Description

The instruction Do Case is used to determine which of several available blocks of instructions will be
executed.

Syntax

Do Case
[case condition1

statement block 1]
[case condition2

statement block 2]
[otherwise/default
 default statement block]

EndCase

The keyword default is equivalent to the word otherwise.

Returns

The value returned by the block of instructions executed.

Example

The script:

Do Case
case Month(TIME) = 1

costs = 1000
case Month(TIME) = 2

costs = 2000
Otherwise

costs = 3000
EndCase

Return costs

returns the value 1000 for each January in the simulation, the value 2000 for each February and 3000 for
all other months.

Do While ... EndDo - Instruction

Description

The instruction Do While is used to repeat a block of instructions on the basis of a condition.

Syntax

Do While requirement
block of instructions

EndDo

Returns

The Do While instruction has no return value.

Example

The script:

cycle = 0
max_cycles = 10
total = 0

Do While cycle < max_cycles
total = total + 10
cycle = cycle + 1

EndDo

Return total

makes the cycle repeat 10 times, thus returning the value 100.

DDEExecute - Function

Description

Causes a command to be executed by another Windows application that supports DDE.

Syntax

send_command = DDEExecute(application,topic,item)

Returns

The function returns 1 if successful, 0 if unsuccessful.

Comments

The application argument specifies the name of the application with which to communicate; the topic
argument, the name of what responds to the command (for example, in Excel, SYSTEM should be
specified), while the item argument specifies the command to be executed. The application referred to
must be open at the time of execution.

The syntax of item (in this case, the command to be executed by the other application) depends on the
messages which a particular application responds to. For example, in the case of Excel it is possible to
send any function of the macro language.

See Also

DDEPoke, DDERequest, Execute, Poke, Request, DDE Messages to which DS Lab Responds

Example

The following script:

DDEExecute("Excel","System","[NEW(1)]")

opens a new Excel worksheet.

DDEPoke - Function

Description

Exports data to another Windows application that supports DDE.

Syntax

Send_value = DDEPoke(application,topic,item,value)

Returns

The value 0 if successful, 1 if unsuccessful.

Comments

The application argument specifies the name of the application with which to communicate; the topic
argument, the name of the document or sheet (as it appears in the title bar of the window concerned,
complete with the extension DOC, XLS, WKS, etc.); while the item argument specifies the exact place
(generally the cell) to which the data is to be exported. The application and the topic (that is, the sheet or
document) referred to must be open at the time of execution.

See Also

DDEExecute, DDERequest, Execute, Poke, Request, DDE Messages to which DS Lab Responds

Example

The script:

DDEPoke("Excel","Sheet1.xls","R1C1",354)

sends the value 354 to the first cell in the upper left-hand corner of Excel Sheet1.

DDERequest - Function

Description

Allows data to be imported from another Windows application that supports DDE.

Syntax

requested_value = DDERequest(application,topic,item)

Returns

The requested value if successful, otherwise the error value #DDEREQUEST.

Comments

The application argument specifies the name of the application with which to communicate; the topic
argument, the name of the document or sheet (as it appears in the title bar of the window concerned,
complete with the extension DOC, XLS, WKS, etc.); while the item argument specifies the exact place
(generally the cell) from which the data is to be imported. The application and the topic (that is, the sheet
or document) referred to must be open at the time of execution.

See Also

DDEExecute, DDEPoke, Execute, Poke, Request, DDE Messages to which DS Lab Responds

Example

The script:

DDERequest("Excel","Sheet1.xls","R1C"&PERIOD)

returns the values present in the first line of Excel Sheet1; more precisely, the value contained in cell
R1C1 for the first period, the value contained in cell R1C2 for the second period and so on.

Error - Function

Description

This function allows you to interrupt the Script at any moment and to assign the value #ERR to the
variable that contains it.

Syntax

Error()

Returns

The function causes the variable to assume the value #ERR.

Comments

This function, unlike others, can be used in place of an instruction since it is not obligatory to use it inside
an assignment or after the Return instruction.

In practice it is possible to use this function as a warning that a limit value has been exceeded or as a
message of incorrect transmission of data for I/O and DDE functions.

Example

The following script assumes an error value if there is insufficient liquidity:
investment = fixed_costs + 1st_year_costs
available_funds = 3500000
If initial_investment > available_funds

Error()
Else

Return investment
EndIf

Every - Function

Description

Assumes the value 1 (TRUE) for steps separated by increment intervals, starting from a given step
(start_step). Counts steps based on the CURRENTSTEP value if the Step Unit is Unit, counts steps
based on the SIMSTEP if the Step Unit is anything other than Unit.

Syntax

return = Every(start_step, increment)

Returns

1 (TRUE) or 0 (FALSE).

The presence of erros in the arguments will cause the function to return the error value #EVERY.

Comments

Used to determine steps separated by fixed intervals. It is important to understand the distinction between
CURRENTSTEP (the label for the current step) and SIMSTEP (the sequence of the current) to use this
function effectively.

When the parameter Step Unit is set to Unit, the function refers to the number of the Current Step (TIME
or CURRENTSTEP variables), and counts starting with the function argument start_step and the given
interval.

For example, when the Step Unit is Unit the script Every(1, 3) has the value 1 (TRUE) when the variable
CURRENTSTEP (that is the label displayed in the simulation step window) assumes the values 1, 4, 7,
10, etc. Which step this refers to in the sequence of steps will depend on the parameter Starting step. If
the parameter Starting step is 5 (CURRENTSTEP 1,4 will not show), the third step SIMSTEP 3
(CURRENTSTEP value 7), will be the first step for which the condition is true and for each third step
thereafter.

When the parameter Step Unit is set to a measure other than Unit, the function refers to the period
number (PERIOD or SIMSTEP variables). It cannot use CURRENTSTEP to count because this is now
contains a label (a month for example) rather than a number.
For example, when the Step Unit is set to Month, the script Every(1, 3) has the value 1(TRUE) when the
variable SIMSTEP assumes the values 1, 4, 7, 10, etc. That is, beginning at the first step in the sequence,
regardless of which month of the year it may be, and each third step thereafter. If the parameter Starting
Step is February, Every(1,3) will be true for February, May, August etc.

See Also

EveryDay, EveryWeek, EveryMonth, EveryYear

Example

If the simulation step is Unit, this script is true every three simulation steps from the First Step of the
model:

Every(FIRSTSTEP, 3)

EveryDay - Function

Description

Assumes the value 1 (TRUE) for steps separated by increment intervals, starting from a given date
(start_date).

Syntax

return = EveryDay(start_date, increment)

Returns

1 (TRUE) or 0 (FALSE).

The presence of erros in the arguments will cause the function to return the error value #EVERYDAY.

Comments

Used to determine steps separated by fixed intervals.

See Also

Every, EveryWeek, EveryMonth, EveryYear

Example

If the simulation step is Day, this script is true every three days starting from the first day of the simulation:

EveryDay(FIRSTSTEP, 3)

EveryMonth - Function

Description

Assumes the value 1 (TRUE) for steps separated by increment intervals, starting from a given date
(start_date).

Syntax

return = EveryMonth(start_date, increment)

Returns

1 (TRUE) or 0 (FALSE)

The presence of erros in the arguments will cause the function to return the error value #EVERYMONTH.

Comments

Used to determine steps separated by fixed intervals.

See Also

Every, EveryDay, EveryWeek, EveryYear

Example

If the simulation step is Month, this script is true every three months from the start of the simulation:

EveryMonth(SIMULATIONSTART, 3)

EveryWeek - Function

Description

Assumes the value 1 (TRUE) for steps separated by increment intervals, starting from a given date
(start_date).

Syntax

return = EveryWeek(start_date, increment)

Returns

1 (TRUE) or 0 (FALSE)

The presence of erros in the arguments will cause the function to return the error value #EVERYWEEK.

Comments

Used to determine steps separated by fixed intervals.

See Also

Every, EveryDay, EveryMonth, EveryYear

Example

If the simulation step is Week, this script is true every three weeks from the initial week of the model:

EveryWeek(FIRSTSTEP, 3)

EveryYear - Function

Description

Assumes the value 1 (TRUE) for steps separated by increment intervals, starting from a given date
(start_date).

Syntax

return = EveryYear(start_date, increment)

Returns

1 (TRUE) or 0 (FALSE)

The presence of erros in the arguments will cause the function to return the error value #EVERYYEAR.

Comments

Used to determine steps separated by fixed intervals.

See Also

Every, EveryDay, EveryWeek, EveryMonth

Example

If the simulation step is Year, this script is true every three years from the initial year of the model:

EveryYear(FIRSTSTEP, 3)

Execute - Function

Description

Allows execution of the commands to which DS Lab responds as DDE messages.

Syntax

command = Execute(topic,item)

Returns

The value 0 if successful, 1 if unsuccessful.

Comments

The keyword SYSTEM must be specified as the topic argument, and the DS Lab command to be
executed as the item argument. The commands that can be executed are those to which DS Lab
responds in DDE. They are as follows:

- OPEN (name of model)

- RECALCULATE (name of model)

- CALCULATE (name of model)

- CLOSE (name of model, save_option)

- UPDATEDDELINKS (name of model)

Notes: The name of model argument cannot specify the same model containing the Execute function.

With CLOSE, the save_value argument must be:

0 to close the model without saving it;

1 to save the model before closing.

See Also

DDEExecute, DDEPoke, DDERequest, Poke, Request

Example

The script:

Execute("SYSTEM","RECALCULATE(STOCKS.LAB)")

executes recalculation of the model STOCKS.LAB.

Exit - Instruction

Description

The Exit instruction is used to interrupt a Do While or a For cycle.

Syntax

Exit

Returns

The Exit instruction has no return value.

Example

The script:

cycle = 1
max_cycles = 10
total = 0
max_total = 80
Do While cycle = max_cycles

total = total + 10
If total > max_total
Exit
EndIf
cycle = cycle + 1

EndDo
Return total

interrupts the cycle either when CYCLE is greater than MAX_CYCLES or when TOTAL is greater than
MAX_TOTAL.

Exp - Function

Description

Calculates the exponential of an expression.

Syntax

exponential = Exp(expression)

Returns

The value of E (Napiers number), the base of natural logarithms, raised to an expression. If the number is
too large, the error value #OVERFLOW is returned.

See Also

Log

Example

The script:

Exp(3)

returns the value 20.08554.

Fact - Function

Description

Calculates the factorial of an expression.

Syntax

factorial = Fact(expression)

Returns

The factorial of the argument.

If the number is too large, the error value #OVERFLOW is returned.

In the case of an argument less than zero, the error value #FACT/<0 is returned.

If the argument is incomplete, the error value #FACT/NOINT is returned.

Example

The script:

Fact(10)

returns the value 3,628,800.

For... Next - Instruction

Description

The instruction For is used to execute a block of instructions a predetermined number of times.

Syntax

For counter_variable = expression To expression [Step expression]
block of instructions

Next

Returns

The For instruction has no return value.

Comments

The keyword Step may be omitted, in which case the counter variable is raised by 1 every cycle. If the
keyword Step is included, it must be followed by an expression giving the increase in the counter variable
at each cycle.

Example

The script:

max_cycles = 10
total = 0
For cycle = 1 To max_cycles

total = total + 10
Next
Return total
makes the cycle repeat 10 times, thus returning the value 100.

FVFutureValue - Function

Description

Calculates the Future Value of a series of fixed payments made at regular intervals.

Syntax

future_value = FVFutureValue(
deposit_period,
number_of_deposits,
deposit_timing,
deposit_amount,
annual_interest_rate,
short_period_option,
compounding_period)

Returns

The Future Value of a series of deposits.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#FV) and one of the following numbers:
/1 number of deposits, interest rate or deposit amount is not valid;
/2 timing constant is not valid;
/3 short period option is not valid;
/4 deposit or compounding period is out of range.

Comments

This function calculates the value of a series of deposits with all interest reinvested at each interest
period.

See Also

AFVFutureValueIncreasingCashFlows, AFVFutureValueVariableCashFlows,
AFVFutureValueVariableRates, AFVNumberOfCashFlows, AFVRateOfReturnIncreasingCashFlows,
AFVRateOfReturnVariableCashFlows, AFVSizeOfCashFlows, FVFutureValueOfPresentValue,
FVNumberOfCashFlows, FVNumberOfPeriods, FVRateOfReturn, FVSizeOfCashFlows

Example

A client intends to invest $350 per month for 15 years. He can get 12.5% interest, compounded
semiannually.

The script would be as follows:

deposit_period = MONTHLY
number_of_deposits = 15 * 12
deposit_timing = ORDNRY
deposit_amount = 350
annual_interest_rate = 0.125
short_period_option = CMPND
compounding_period = SEMIANNUAL

FVFutureValue(
deposit_period,
number_of_deposits,
deposit_timing,
deposit_amount,
annual_interest_rate,
short_period_option,
compounding_period)

The function calculates that, on the basis of the above assumptions, after 15 years the client will receive
$177,978.34.

In this particular case, the choice of the CMPND option for the short term makes no difference.

If the client intended to make an initial payment immediately, the deposit_timing argument should be
given the value ADUE.

FVFutureValueOfPresentValue - Function

Description

Calculates the Future Value of a sum of money left in deposit for a certain number of periods. This
function does not deal with a series of cash flows but the return of the capital plus interest.

Syntax

future_value = FVFutureValueOfPresentValue(
present_value,
annual_interest_rate,
number_of_periods,
short_period_option,
compounding_period)

Returns

The function returns the Future Value.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#FV) and one of the following numbers:
/1 number of periods, actual value or interest rate is not valid;
/3 short period option is not valid;
/4 compounding period is out of range.

Comments

This function returns the total value of a deposit after a certain number of periods in which the interest is
reinvested.

The number of periods can include decimal fractions; it always refers to the compound interest calculation
period. If the CONTINUOUS option is chosen for the compounding period, the number of periods is in
years.

See Also

AFVFutureValueIncreasingCashFlows, AFVFutureValueVariableCashFlows,
AFVFutureValueVariableRates, AFVNumberOfCashFlows, AFVRateOfReturnIncreasingCashFlows,
AFVRateOfReturnVariableCashFlows, AFVSizeOfCashFlows, FVFutureValue,
FVNumberOfCashFlows, FVNumberOfPeriods, FVRateOfReturn, FVSizeOfCashFlows,
STEndingBalance

Example

A client buys a $50,000 three-year bond without coupons, bearing compound interest at 12% annually.

present_value = 50000
annual_interest_rate = 0.12
number_of_periods = 3
short_period_option = CMPND
compounding_period = CONTINUOUS
FVFutureValueOfPresentValue(

present_value,

annual_interest_rate,
number_of_periods,
short_period_option,
compounding_period)

At the end of three years he will receive $71,666.47.

FVNumberOfCashFlows - Function

Description

Calculates the Number of Cash Flows of a given amount at regular intervals necessary to obtain a
specific future value.

Syntax

number_of_deposits = FVNumberOfCashFlows(
future_value,
deposit_period,
deposit_amount,
annual_interest_rate,
compounding_period,
short_period_option,
deposit_timing)

Returns

The number of deposits.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#FV) and one of the following numbers:
/1 number of deposits, interest rate or deposit amount is not valid;
/2 timing constant is not valid;
/3 short period option is not valid;
/4 deposit or compounding period is out of range;
/9 impossible to capitalize the given future value.

Comments

This function is used to answer questions like: How many deposits do I have to make to accumulate a
certain capital?

The number of deposits returned is always a whole number. This number will be the minimum number of
deposits of the given amount which will have to be made to accumulate the future value: one fewer
deposit would return a future value smaller than that desired.

See Also

AFVFutureValueIncreasingCashFlows, AFVFutureValueVariableCashFlows,
AFVFutureValueVariableRates, AFVNumberOfCashFlows, AFVRateOfReturnIncreasingCashFlows,
AFVRateOfReturnVariableCashFlows, AFVSizeOfCashFlows, FVFutureValue,
FVFutureValueOfPresentValue, FVNumberOfPeriods, FVRateOfReturn, FVSizeOfCashFlows

Example

A client wants to accumulate $100,000 by depositing $500 per month in a fund bearing 9.75% monthly
compound interest. This script determines how many deposits are necessary.

future_value = 100000
deposit_period = MONTHLY
deposit_amount = 500

annual_interest_rate = 0.0975
compounding_period = MONTHLY
short_period_option = CMPND
deposit_timing = ADUE
FVNumberOfCashFlows(

future_value,
deposit_period,
deposit_amount,
annual_interest_rate,
compounding_period,
short_period_option,
deposit_timing)

To reach $100,000, 119 deposits are needed.

FVNumberOfPeriods - Function

Description

Calculates the Number of Periods needed to obtain a specific future value, given a present value and a
specific interest rate. This function does not deal with a series of cash flows but the return of the capital
plus interest.

Syntax

number_of_periods = FVNumberOfPeriods(
future_value,
annual_interest_rate,
present_value,
short_period_option,
compounding_period)

Returns

The number of compounding periods. This can be a decimal number.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#FV) and one of the following numbers:
/1 future value, present value or interest rate is not valid;
/3 short period option is not valid;
/4 compounding period is out of range.

Comments

This function is used to find how long is needed to reach a fixed sum, given a known interest rate.

The number of periods returned refers to the compounding period. If the compounding period is specified
as CONTINUOUS, the number of periods is in years.

See Also

AFVFutureValueIncreasingCashFlows, AFVFutureValueVariableCashFlows,
AFVFutureValueVariableRates, AFVNumberOfCashFlows, AFVRateOfReturnIncreasingCashFlows,
AFVRateOfReturnVariableCashFlows, AFVSizeOfCashFlows, FVFutureValue,
FVFutureValueOfPresentValue, FVNumberOfCashFlows, FVRateOfReturn, FVSizeOfCashFlows

Example

To find out in how many weeks a capital sum doubles at 11% weekly compound interest:

present_value = 100
future_value = present_value * 2
annual_interest_rate = 0.11
short_period_option = CMPND
compounding_period = WEEKLY
FVNumberOfPeriods(

future_value,
annual_interest_rate,
present_value,

short_period_option,
compounding_period)

The capital doubles in 328.92 weeks, that is a little more than 6 years.

FVRateOfReturn - Function

Description

Calculates the Internal Rate of Return needed to accumulate a specific future value, given a series of
equal deposits made at fixed intervals.

Syntax

annual_interest_rate = FVRateOfReturn(
future_value,
deposit_period,
deposit_amount,
number_of_payments,
compounding_period,
short_period_option,
deposit_timing)

Returns

The annual interest rate.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#FV) and one of the following numbers:
/1 number of deposits, future value or deposit amount is not valid;
/2 timing constant is not valid;
/3 short period option is not valid;
/4 deposit or compounding period is out of range;
/7 calculation not possible with only one deposit and deposit timing option set to ORDNRY;
/8 future value smaller than total deposits;
/9 the iteration process gave rise to an out of range value;
/10 the maximum number of iterations was exceeded without converging on a value for the interest

rate.

Comments

This function can be used to determine the viability of a project or to evaluate the risk factor in pursuing a
certain goal.

The function is iterative. The iteration process stops when a value is found with an error of less than one
millionth or when more than 100 iterations have been made. In the latter case the error value #FV/10 to
return an error value.

See Also

AFVFutureValueIncreasingCashFlows, AFVFutureValueVariableCashFlows,
AFVFutureValueVariableRates, AFVNumberOfCashFlows, AFVRateOfReturnIncreasingCashFlows,
AFVRateOfReturnVariableCashFlows, AFVSizeOfCashFlows, FVFutureValue,
FVFutureValueOfPresentValue, FVNumberOfCashFlows, FVNumberOfPeriods,
FVSizeOfCashFlows

Example

A client wants to know the interest rate at which he would have to invest to obtain $300,000 in 15 years

time, depositing $350 each month.

The FVRateOfReturn function could be used as follows:

future_value = 300000
deposit_period = MONTHLY
deposit_amount = 350
number_of_payments = 15 * 12
compounding_period = SEMIANNUAL
short_period_option = CMPND
deposit_timing = ORDNRY
FVRateOfReturn(

future_value,
deposit_period,
deposit_amount,
number_of_payments,
compounding_period,
short_period_option,
deposit_timing)

The calculation returns an annual interest rate of 18.11%.

The values for the compounding period, short period option and deposit timing arguments were chosen at
random because nothing was specified in the example.

FVSizeOfCashFlows - Function

Description

Calculates the Size of Cash Flows necessary to accumulate a specified future value, given a series of
equal deposits made at fixed intervals.

Syntax

deposit_amount = FVSizeOfCashFlows(
future_value,
deposit_period,
number_of_deposits,
annual_interest_rate,
compounding_period,
short_period_option,
deposit_timing)

Returns

The amount of the deposits.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#FV) and one of the following numbers:
/1 number of deposits, interest rate or future value is not valid;
/2 timing constant is not valid;
/3 short period option is not valid;
/4 deposit or compounding period is out of range.

Comments

This function can be used to find the weekly, monthly, etc. deposit amount necessary to accumulate a
certain sum after a specified period.

See Also

AFVFutureValueIncreasingCashFlows, AFVFutureValueVariableCashFlows,
AFVFutureValueVariableRates, AFVNumberOfCashFlows, AFVRateOfReturnIncreasingCashFlows,
AFVRateOfReturnVariableCashFlows, AFVSizeOfCashFlows, FVFutureValue,
FVFutureValueOfPresentValue, FVNumberOfCashFlows, FVNumberOfPeriods, FVRateOfReturn

Example
A young couple want to accumulate $70,000 in 5 years. To do this they intend to use a fund which
guarantees a semiannual compound interest rate of 10%. They reckon to deposit once a month.

The function can be used as follows:
future_value = 70000
deposit_period = MONTHLY
number_of_deposits = 5 * 12
annual_interest_rate = 0.1
compounding_period = SEMIANNUAL
short_period_option = CMPND
deposit_timing = ORDNRY
FVSizeOfCashFlows(

future_value,
deposit_period,
number_of_deposits,
annual_interest_rate,
compounding_period,
short_period_option,
deposit_timing)

Given these values, the couple need to deposit $908.80 per month.

GetStep - Function

Description

Finds the simulation step corresponding to the named user defined step.

Syntax

step_number = GetStep("name_of_step")

The quotation marks inside the parentheses are in bold type to emphasize that their use is compulsory
with this function.

Returns

The number of the step.

If the name_of_step argument is not the name of a user defined step in the simulation, the error value
#GETSTEP is returned.

Comments

This function is used where a different part of the script is to be executed for different user defined steps.
It eliminates the need to modify the script when additional steps are added to the model, changing the
position of the existing ones.

Example

A variable called Market Index is to have a different value for each step in a model containing user
defined steps representing three different markets:
1. Europe
2. America
3. Asia.
The script of the variable containing this function could read as follows:

Do Case
Case SIMSTEP = GetStep("Europe")

' if step is Europe
Local_Market_Index = 25

Case SIMSTEP = GetStep("America")
' if step is America
Local_Market_Index = 33

Case SIMSTEP = GetStep("Asia")
' if step is Asia
Local_Market_Index = 20

EndCase

Return Local_Market_Index

If ... EndIf - Instruction

Description

The instruction If determines which block of instructions will be executed on the basis of a condition.

Syntax

If condition 1 [Then]
instruction block 1 ...

[Else If condition n[Then]
instruction block n

[Else
instruction block else]

EndIf

Returns

The If instruction returns a meaningful value only if the instruction block which is executed ends with an
expression. In this case the returned value is the value of the expression.

Comments

The key word Then is optional: it can be used or not according to the users preferred programming style.

Example

The script:

expenses = 0

If Month(TIME) = 12
expenses = 1000

Else
expenses = 500

EndIf

Return expenses

returns the value 1000 every December of the simulation and the value 500 in all other cases.

Int - Function

Description

Calculates the integer part of an expression.

Syntax

integer= Int(expression)

Returns

The integer part of the argument.

See Also

Round

Example

The script:

Int(3.5)

returns the value 3.

InventoryEconomicOrderQuantity - Function

Description

Calculates Inventory Economic Order Quantity for an inventory item, taking account of the order cost and
inventory carrying cost per unit.

Syntax

order_size = InventoryEconomicOrderQuantity(
annual_sales,
order_cost,
inventory_carrying_cost_per_unit)

Returns

The Inventory Economic Order Quantity.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#INVENTORY) and the following number:
/1 one of the arguments is less than zero

Comments

The order cost argument represents administration, transport and production startup costs.

The inventory carrying cost per unit represents the costs of keeping inventory, mainly financial costs due
to the immobilization of capital, equipment costs, insurance, taxes, etc.

This function does not consider variable costs such as discounts.

See Also

InventoryServiceLevel, InventorySafetyStock, InventoryReorderPoint

Example

A manufacturer makes 6 sizes of doors. Sales of the smallest model average 560 units each year. Costs
associated with setting up production for the door are $1300. Each door costs $78 to produce. Inventory
carrying costs per unit are 32% of value annually.

annual_sales = 560
order_cost = 1300
inventory_carrying_cost_per_unit = 78 * 0.32
InventoryEconomicOrderQuantity(

annual_sales,
order_cost,
inventory_carrying_cost_per_unit)

The Inventory Economic Order Quantity is 242 doors.

InventoryReorderPoint - Function

Description

Calculates the most efficient Inventory Reorder Point.

Syntax

inventory_reorder_point = InventoryReorderPoint(
average_sales,
standard_deviation_of_sales,
risk_of_running_out_of_item)

Returns

The Inventory Reorder Point.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#INVENTORY) and one of the following numbers:
/1 one of the arguments is out of range;
/2 the risk of running out of the item is not valid.

Comments

This function calculates the Inventory Reorder Point, that is the level at which the item should be
reordered.

Average sales should be calculated for the period required for the reorder to be delivered.

Maximum demand is set at 3.5 times standard deviation above average. The risk of running out of the
item is written as a decimal number: 0.10 represents the risk that stock will reach zero in 10 reorder
periods out of 100.

See Also

InventoryEconomicOrderQuantity, InventoryServiceLevel, InventorySafetyStock

Example

Consider an inventory item with the following characteristics:

average_sales = 10.8
standard_deviation_of_sales = 2.7
risk_of_running_out_of_item = 0.05
InventoryReorderPoint(

average_sales,
standard_deviation_of_sales,
risk_of_running_out_of_item)

The reorder point is a stock level of 15 units.

InventorySafetyStock - Function

Description

Calculates the Inventory Safety Stock.

Syntax

safety_level = InventorySafetyStock(
average_sales,
standard_deviation_of_sales,
risk_of_running_out_of_item)

Returns

The Inventory Safety Stock.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#INVENTORY) and one of the following numbers:
/1 one of the arguments is out of range;
/2 the risk of running out of the item is not valid.

Comments

This function calculates the Inventory Safety Stock, that is the stock that should be on hand when a new
order is made so as not to run out of the item.

Average sales should be calculated for the period required for the reorder to be delivered.

Maximum demand is set at 3.5 times standard deviation above average. The risk of running out of the
item is written as a decimal number: 0.10 represents the risk that stock will reach zero in 10 reorder
periods out of 100.

See Also

InventoryEconomicOrderQuantity, InventoryServiceLevel, InventoryReorderPoint

Example

Consider an inventory item with the following characteristics:

average_sales = 10.8
standard_deviation_of_sales = 2.7
risk_of_running_out_of_item = 0.05
InventorySafetyStock(

average_sales,
standard_deviation_of_sales,
risk_of_running_out_of_item)

The safety stock level will be 4 units.

InventoryServiceLevel - Function

Description

Calculates the Inventory Service Level.

Syntax

inventory_service_level = InventoryServiceLevel(
order_quantity,
average_sales,
standard_deviation_of_sales,
inventory_reorder_point)

Returns

The Inventory Service Level.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#INVENTORY) and one of the following numbers:
/1 one of the arguments is out of range;
/2 the calculated Inventory Service Level is over 100%.

Comments

This function calculates the Inventory Service Level as the percentage of orders that will be satisfied from
inventory.

Average sales should be calculated for the period required for the new order to be delivered.

Maximum demand is set at 3.5 times standard deviation above average.

See Also

InventoryEconomicOrderQuantity, InventorySafetyStock, InventoryReorderPoint

Example

Consider an inventory item with the following characteristics:

order_size = 242
average_sales = 10.8
standard_deviation_of_sales = 2.7
inventory_reorder_point = 11
InventoryServiceLevel(

order_size,
average_sales,
standard_deviation_of_sales,
inventory_reorder_point)

The Inventory Service Level is 99.60%.

Log - Function

Description

Calculates the natural logarithm of an expression.

Syntax

Logarithm= Log(expression)

Returns

The logarithm of the argument.

In the case of a number outside the allowed range, the error value #OVERFLOW will be returned.

In the case of an argument smaller than or equal to zero, the error value #LOG/<=0 will be returned.

See Also

Exp,Log10

Example

The script:

Log(1)

returns the value 0.

Log10 - Function

Description

Calculates the base 10 logarithm of an expression.

Syntax

Logarithm= Log10(expression)

Returns

The base 10 logarithm of the argument.

A number out of the allowed range will cause the function to return the error value #OVERFLOW.

An argument less than or equal to zero will cause the function to return the error value #LOG10/<=0.

See Also

Exp, Log

Example

The script:

Log10(1)

returns the value 0.

Loop - Instruction

Description

The Loop instruction returns to the test of a Do While or For cycle.

Syntax

Loop

Returns

The Loop instruction has no return value.

Example

The script:

cycle = 0
max_cycles = 10
total = 0
Do While cycle < max_cycles

cycle = cycle + 1
If cycle MOD 2 = 0
Loop
EndIf
total = total + cycle

EndDo
Return total

calculates the sum of the even numbers (MOD 2 = divisible by 2 without remainder) from 1 to 10.

LoopTime - Instruction

Description

The LoopTime instruction causes a simulation not to advance to the next step after calculating values for
all the variables, but to restart calculation from the same step.

Syntax

LoopTime

Returns

The LoopTime instruction has no return value.

See Also

CalculateFrom

Comments

The LoopTime instruction, in conjunction with the STARTLOOP system variable, allows Goal Seeking
capability. In practice, this is a different kind of tool from traditional Goal Seeking environments. There is
no parallel environment in which a Goal Seek may be executed on an existing model: the model itself has
to be built in view of the Goal Seek. This can be limiting in certain cases but is very powerful where there
are sophisticated requirements.

The LoopTime instruction causes the current step the one which is currently being calculated to be
recalculated. The STARTLOOP variable contains the value TRUE the first time it is calculated, FALSE all
the other times the same period is recalculated. With these basic tools, sophisticated Goal Seeking
algorithms can easily be created, because attention is focused on each variable, leaving to DS Lab the
task of evaluating all the connections.

The technique is to organize part of a model like this:

In the variable Aim, a test is carried out: if its value satisfies the goal given by the Goal variable, the
simulation proceeds to the next step without executing the LoopTime instruction; otherwise (that is, if Aim
is not satisfied), LoopTime is executed. This means that all the variables for the current step will be
recalculated, particularly the Cause variable which represents an input to the Aim variable (usually not

directly but through other intermediate variables, as will be illustrated in the following example). The
optimization algorithm is put in the variable Cause, which has Aim and Goals as its inputs and will
therefore determine its own value.

As a particular case of the technique described above, it is worth noting the possibility of carrying out an
intermediate step calculation a fixed number of times for each step. This can be very useful when greater
precision is needed in the calculations without saving intermediate data. For example, the step unit could
be MONTH and every month be made to recalculate four times. To obtain this only requires one
disconnected variable which invokes the LoopTime instruction.

The script of this variable could be structured like this:

max_cycles = 4
If STARTLOOP REM if this is the first time

If max_cycles > 1
LoopTime
EndIf
Return 1

Else
If (cycles[-1] + 1) < max_cycles
LoopTime()
EndIf
Return cycles [-1] + 1

EndIf

This last example shows how to use DS Lab to execute a dynamic simulation with Forrester methodology,
or in terms comprehensible only to the experts, how to introduce the DT.

In this case the maximum number of cycles (the local variable max_cycles in the preceding example) can
be found on the basis of DT as follows:

max_cycles = 1 / DT

As with other languages for dynamic simulation of systems, DT must be chosen so that max_cycles will
be an integer.

The level equations (a technical term used in Dynamic Systems Analysis) of the model must be presented
in the usual way with DT.

For example, in a Material flow simulations model, the script for the Inventory variable will look like this:

Inventory + (Incoming Material - Outgoing Material) * DT

Example

Suppose you want to find the cost level (variable Costs)which, with a given Sales amount, yields a certain
Percentage Profit Margin. In this case the Desired Percentage Profit Margin is a series containing the
desired percentage in each step.

The LoopTime instruction is used in the variable Percentage Profit Margin as follows: If the percentage
profit margin is different from the goal (by any chosen margin of error), the LoopTime instruction is
executed, that is it is decided not to go to the next step but to recalculate the current step. The script of
the variable Costs has the function of increasing or decreasing costs as required so as to obtain a profit
margin, and thus a percentage, nearer to the desired goal.

Script of the variable Percentage Profit Margin:

percentage = Profit Margin / Sales
If (Abs(percentage - Desired Percentage Profit Margin) > 0.00000000000001)
LoopTime
EndIf
Return percentage
Script of the variable Costs:

If STARTLOOP
Return Costs [-1]

Else
Return Costs[-1] - Costs[-1]* (Desired Percentage Profit Margin -

Percentage Profit Margin[-1])
EndIf

Max - Function

Description

Finds the greater of two expressions.

Syntax

greater = Max(expression1, expression2)

Returns

The greater of the two expressions.

See Also

Min

Example

The script:

Max(100, 150)

returns the greater of the two values.

Mean - Function

Description

Calculates the mean of an array of numbers.

Syntax

mean = Mean(connected element containing array of values [array notation])

The brackets after the connected element containing array argument are in bold type to emphasize that
their use is compulsory with this function.

Returns

The mean of an array of values.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#STAT) and the following number:
/9 calculated value out of range.

Comments

This function calculates the mean of an array of values.

The values must be passed to the function by specifying the name of the connected element. The array
notation must be in brackets.

Consider a hypothetical connected series called Values. An example for the connected element
containing array [array notation] could be:

Values [1:24]

See Also

StandardDeviation, Variance

Example

To find the mean yield of the following portfolio:

 YIELDS WEIGHTS

Bonds 0.085 0.25

Shares 0.132 0.5

Short Term Securities 0.07 0.25

Mean(Values 2 [R2C2 : R4C2])

The Mean is 0.09567.

Min - Function

Description

Finds the lesser of two expressions.

Syntax

lesser = Min(expression1, expression2)

Returns

The lesser of the two expressions.

See Also

Max

Example

The script:

Min (100, 150)

returns the lesser of the two values.

Month - Function

Description

Find the month (1-12) of a given date in internal format.

Syntax

month=Month(internal_date)

Returns

The number of the month.
If the internal_date argument does not represent a valid date, the error value #MONTH is returned.

See Also

Day, Week, Year, DayWeek, DayYear

Example

The script:

Month(TIME)

will return the number of the current month in the simulation.

NumberOfPeriods - Function

Description

Gives the number of periods between two dates, in the selected time units.

Syntax

N_Periods=NumberOfPeriods(StartingDate, FinishDate, TimeUnit)

Returns

The number of periods.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#NUMPERIODS) and one of the following numbers:

/1 Invalid time unit. The range is 0 to 366;
/2 Starting date later than finish date;
/4 Time unit not valid;
/5 Day or month in the dates out of range.

Example
To find the number of weeks between two dates:
NumberOfPeriods(

Date("June 15 1992"),
Date("September 15 1992"),
WEEKLY)

The answer is 13.14 (equivalent to 13 weeks and one day).

Poke - Function

Description

This function is used to pass data to elements in the same or other DS Lab models. It can be used as an
automatic communication channel between two or more DS Lab models.

Syntax

Send_Data=Poke("topic", "item[[step notation]]", value)

The quotation marks inside the parentheses are in bold type to emphasize that their use is compulsory
with this function. The brackets enclosing the step notation argument are in bold type to emphasize that
they are compulsory if a step notation reference is specified.

Returns

0 if successful (the data was passed), otherwise 1.

Comments

The topic argument is the name of a DS Lab model (as it appears in the model window, complete with the
extension .LAB); the item argument is the name of the element which is to receive the data. The step
notation argument is optional. Its default value is the current step in the model receiving the data. The
model to which the data is sent must be open at the time of execution.

The destination of the Poke function cannot be a table.

See Also

DDEExecute, DDEPoke, DDERequest, Execute, Request.

Example

The script:

Poke ("MODEL1.LAB","Revenues[2]", 500)

changes the value of the Revenues variable at the second step in the model MODEL1 to 500.

PVNumberOfCashFlows - Function

Description

Calculates the Number of Cash Flows of a given fixed amount obtainable from a given present value.

Syntax

number_of_payments = PVNumberOfCashFlows(
present_value,
payment_period,
payment_amount,
annual_interest_rate,
compounding_period,
short_period_option,
payment_timing)

Returns

The number of payments.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#PV) and one of the following numbers:
/1 present value, interest rate or payment amount is not valid;
/2 timing constant is not valid;
/3 short period option is not valid;
/4 payment or compounding period is out of range;
/9 present value is incompatible with this choice of arguments.

Comments

This function addresses questions such as: If I have a given amount of capital, how long will it support me
at a desired level?

The returned value is always an integer, representing the maximum number of periods for which
payments of the desired amount are possible. One more period would require a bigger initial deposit
(present value).

See Also

APVNumberOfCashFlows, APVPresentValueIncreasingCashFlows,
APVPresentValueVariableCashFlows, APVPresentValueVariableRates,
APVRateOfReturnIncreasingCashFlows, APVRateOfReturnVariableCashFlows,
APVSizeOfCashFlows, PVPresentValue, PVPresentValueDeferredCashFlows,
PVPresentValueOfFutureValue, PVRateOfReturn, PVSizeOfCashFlows,
PVSizeOfDeferredCashFlows

Example

A client wishes to make monthly withdrawals of $1000 from an investment with an initial value of $50,000
which pays interest at an annual rate of 9.5%, compounded monthly. He wants to know how many
withdrawals he will be able to make.

current_balance = 50000

payment_period = MONTHLY
payment_amount = 1000
annual_interest_rate = 0.095
compounding_period = MONTHLY
short_period_option = CMPND
payment_timing = ORDNRY
PVNumberOfCashFlows(

current_balance,
payment_period,
payment_amount,
annual_interest_rate,
compounding_period,
short_period_option,
payment_timing)

He will be able to make 63 withdrawals.

PVPresentValue - Function

Description

Calculates the Present Value of a series of equal payments made at regular intervals.

Syntax

present_value = PVPresentValue(
compounding_period,
payment_period,
number_of_payments,
annual_interest_rate,
payment_amount,
short_period_option,
payment_timing)

Returns

The present value of the series of payments.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#PV) and one of the following numbers:
/1 number of payments, interest rate or payment amount is not valid;
/2 timing constant is not valid;
/3 short period option is not valid;
/4 payment or compounding period is out of range.

Comments

This function calculates the present value of a series of future cash flows. It is a standard tool of financial
analysis, typically used to compare different cash flows. It answers questions like: How much can a client
borrow, given the level of payment he can afford and the interest and duration of loans available? a
typical mortgage question or: How much must the client invest to obtain a given fixed income? (annuity).

See Also

APVNumberOfCashFlows, APVPresentValueIncreasingCashFlows,
APVPresentValueVariableCashFlows, APVPresentValueVariableRates,
APVRateOfReturnIncreasingCashFlows, APVRateOfReturnVariableCashFlows,
APVSizeOfCashFlows, PVNumberOfCashFlows, PVPresentValueDeferredCashFlows,
PVPresentValueOfFutureValue, PVRateOfReturn, PVSizeOfCashFlows,
PVSizeOfDeferredCashFlows

Example

A client would like to draw $500 per month for 48 months. He can get 14% interest compounded monthly.

compounding_period = MONTHLY
payment_period = MONTHLY
number_of_payments = 48
annual_interest_rate = 0.14
payment_amount = 500
short_period_option = CMPND

payment_timing = ORDNRY
PVPresentValue(

compounding_period,
payment_period,
number_of_payments,
annual_interest_rate,
payment_amount,
short_period_option,
payment_timing)

He would have to invest $18,297.27.

PVPresentValueDeferredCashFlows - Function

Description

Calculates the net Present Value of a series of payments of a fixed amount starting after a certain number
of periods.

Syntax

present_value = PVPresentValueDeferredCashFlows(
annual_interest_rate,
number_of_payments,
payment_period,
number_of_deferment_periods,
payment_amount,
short_period_option,
compounding_period)

Returns

The present value of the deferred cash flows.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#PV) and one of the following numbers:
/1 number of payments, number of deferment periods, interest rate or payment amount not valid;
/3 short period option is not valid;
/4 payment period or compounding period out of range.

Comments

This function calculates the present value of a series of cash flows starting at a given number of periods
from now. It is more flexible than the standard function PVPresentValue as it can deal with cash flows
starting at a future time.

The period of deferment is calculated in the same units as the payment period. Thus if payments will be
MONTHLY, the time until payments start must also be expressed in months.

There is no payment_timing argument: payments are assumed to be at the start of each period. If this is
not the case, adding a period to the number of deferment periods will give the correct answer.

See Also

APVNumberOfCashFlows, APVPresentValueIncreasingCashFlows,
APVPresentValueVariableCashFlows, APVPresentValueVariableRates,
APVRateOfReturnIncreasingCashFlows, APVRateOfReturnVariableCashFlows,
APVSizeOfCashFlows, PVNumberOfCashFlows, PVPresentValue, PVPresentValueOfFutureValue,
PVRateOfReturn, PVSizeOfCashFlows, PVSizeOfDeferredCashFlows

Example

We want to know the present value of a $2,700 monthly cash flow starting in 8 months time and lasting for
two years. The interest rate is 12.75% compounded monthly.

annual_interest_rate = 0.1275

number_of_payments = 24
payment_period = MONTHLY
number_of_deferment_periods = 8
payment_amount = 2700
short_period_option = CMPND
compounding_period = MONTHLY
PVPresentValueDeferredCashFlows(

annual_interest_rate,
number_of_payments,
payment_period,
number_of_deferment_periods,
payment_amount,
short_period_option,
compounding_period)

The present value is $52,872.63.

PVPresentValueOfFutureValue - Function

Description

Calculates the Present Value of a lump sum payment due after a given number of periods. This function
does not deal with cash flows but with repayment at maturity of the investment.

Syntax

present_value = PVPresentValueOfFutureValue(
future_value,
annual_interest_rate,
number_of_periods_before_payment,
short_period_option,
compounding_period)

Returns

The present value of the future lump sum.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#PV) and one of the following numbers:
/1 number of periods, future value or interest rate is not valid;
/3 short period option is not valid;
/4 compounding period is out of range.

Comments

This function can be used to calculate the present value of an investment maturing in the future or to find
what deposit is required now to achieve a desired amount later under given conditions.

The number of periods may include a decimal fraction. It must however be expressed in the same units
as the interest compounding period. If compounding is CONTINUOUS, it is assumed to be expressed in
years.

See Also

APVNumberOfCashFlows, APVPresentValueIncreasingCashFlows,
APVPresentValueVariableCashFlows, APVPresentValueVariableRates,
APVRateOfReturnIncreasingCashFlows, APVRateOfReturnVariableCashFlows,
APVSizeOfCashFlows, PVNumberOfCashFlows, PVPresentValue,
PVPresentValueDeferredCashFlows, PVRateOfReturn, PVSizeOfCashFlows,
PVSizeOfDeferredCashFlows

Example

To calculate the present value of a $2000 note at 13.5% compounded daily, payable in 60 days time:

future_value = 2000
annual_interest_rate = 0.135
number_of_periods_before_payment = 60
short_period_option = CMPND
compounding_period = DAILY
PVPresentValueOfFutureValue(

future_value,

annual_interest_rate,
number_of_periods_before_payment,
short_period_option,
compounding_period)

The present value is $1,956.11.

PVRateOfReturn - Function

Description

Calculates the Internal Rate of Return required to provide a fixed cash flow of a given size from a
specified initial amount.

Syntax

rate_of_return = PVRateOfReturn(
present_value,
payment_period,
payment_amount,
number_of_payments,
compounding_period,
short_period_option,
payment_timing)

Returns

The required rate of return.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#PV) and one of the following numbers:
/1 number of payments, present value or payment amount is not valid;
/2 timing constant is not valid;
/3 short period option is not valid;
/4 payment or compounding period out of range;
/7 calculation is not possible with a single payment and ADUE payment timing;
/8 future value is less than sum of payments;
/9 the iteration process gave rise to an out of range value;
/10 the maximum number of iterations was exceeded without converging on a value for the rate of

return.

Comments

This function may be used in determining the viability of an investment plan or in calculating the risks
associated with new ventures.

The function is iterative. It terminates after the 6th decimal fraction (millionths) of the value or at the 100th
loop (in which case it returns the error value #PV/10).

See Also

APVNumberOfCashFlows, APVPresentValueIncreasingCashFlows,
APVPresentValueVariableCashFlows, APVPresentValueVariableRates,
APVRateOfReturnIncreasingCashFlows, APVRateOfReturnVariableCashFlows,
APVSizeOfCashFlows, PVNumberOfCashFlows, PVPresentValue,
PVPresentValueDeferredCashFlows, PVPresentValueOfFutureValue, PVSizeOfCashFlows,
PVSizeOfDeferredCashFlows

Example

A client has a $40,000 mortgage that he is repaying in 30 semiannual payments of $3,200. He wants to

know the real interest rate.

present_value = 40000
payment_period = SEMIANNUAL
payment_amount = 3200
number_of_payments = 30
compounding_period = SEMIANNUAL
short_period_option = CMPND
payment_timing = ORDNRY
PVRateOfReturn(

present_value,
payment_period,
payment_amount,
number_of_payments,
compounding_period,
short_period_option,
payment_timing)

The interest rate is 13.85%.

PVSizeOfCashFlows - Function

Description

Calculates the Size of Cash Flows of fixed size, made at regular intervals, corresponding to a given
present value.

Syntax

payment_amount = PVSizeOfCashFlows(
compounding_period,
payment_period,
number_of_payments,
annual_interest_rate,
present_value,
short_period_option,
payment_timing)

Returns

The size of payment required.

Any errors in the arguments will cause the function to return an error value consisting of the error variable
for this class of functions (#PV) and one of these numbers:

/1 present value, interest rate or number of payments is not valid;
/2 timing constant is not valid;
/3 short period option is not valid;
/4 payment or compounding period is out of range.

Comments

This function is used to find what annuity a client can afford, given the sum available to invest.

It also answers the common question: What is the combined principal and interest payment on a
mortgage or loan of a certain amount, given the length of time available for repayment?

See Also

APVNumberOfCashFlows, APVPresentValueIncreasingCashFlows,
APVPresentValueVariableCashFlows, APVPresentValueVariableRates,
APVRateOfReturnIncreasingCashFlows, APVRateOfReturnVariableCashFlows,
APVSizeOfCashFlows, PVNumberOfCashFlows, PVPresentValue,
PVPresentValueDeferredCashFlows, PVPresentValueOfFutureValue, PVRateOfReturn,
PVSizeOfDeferredCashFlows

Example

A client needs a $100,000 mortgage. He wants to repay it over 15 years at 14%. What is his monthly
payment?
compounding_period = MONTHLY
payment_period = MONTHLY
number_of_payments = 15 * 12

annual_interest_rate = 0.14
present_value = 100000
short_period_option = CMPND
payment_timing = ORDNRY
PVSizeOfCashFlows(

compounding_period,
payment_period,
number_of_payments,
annual_interest_rate,
present_value,
short_period_option,
payment_timing)

He will pay $1,331.74 monthly.

PVSizeOfDeferredCashFlows - Function

Description

Calculates the Size of Cash Flows of fixed size, made at regular intervals, corresponding to a given
present value, starting after a given number of periods.

Syntax

payment_amount = PVSizeOfDeferredCashFlows(
annual_interest_rate,
number_of_payments,
payment_period,
number_of_deferment_periods,
present_value,
short_period_option,
compounding_period)

Returns

The size of the payments.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#PV) and one of the following numbers:
/1 number of payments, number of deferment periods, present value or interest rate is not valid;
/3 short period option is not valid;
/4 payment or compounding period out of range;

Comments

Given the sum available to invest, this function will calculate the amount obtainable as a deferred annuity.

It can be used in any case involving constant cash flows, as it is possible to establish the interval between
now and when payments are expected to start (which may be set to zero).

The period of deferment is calculated in the same units as the payment period. Thus if payments will be
MONTHLY, the time until payments start must also be expressed in months.

There is no payment_timing argument: payments are assumed to be at the start of each period. If this is
not the case, adding a period to the number of deferment periods will give the correct result.

See Also

APVNumberOfCashFlows, APVPresentValueIncreasingCashFlows,
APVPresentValueVariableCashFlows, APVPresentValueVariableRates,
APVRateOfReturnIncreasingCashFlows, APVRateOfReturnVariableCashFlows,
APVSizeOfCashFlows, PVNumberOfCashFlows, PVPresentValue,
PVPresentValueDeferredCashFlows, PVPresentValueOfFutureValue, PVRateOfReturn,
PVSizeOfCashFlows

Example

We want to know the amount of the monthly annuity payments that can be derived from the investment of
$50,000 at 9% interest. Payments are to begin in 4 years time and last for 20 years.

interest_rate = 0.09
number_of_payments = 20 * 12
payment_period = MONTHLY
deferment_periods = 4 * 12
present_value = 50000
short_period_option = CMPND
compounding_period = MONTHLY
PVSizeOfDeferredCashFlows(

interest_rate,
number_of_payments,
payment_period,
deferment_periods,
present_value,
short_period_option,
compounding_period)

We can expect monthly payments of $639.14.

Rand - Function

Description

Returns a random number between 0 and 1.

Syntax

number = Rand()

Returns

The random number.

Example

To obtain a number between 0 and n, multiply n by the number returned by Rand():

number = Rand()
Return number * n

while to obtain a number between a and b with a < b, we can use the formula:

a + (b - a) * Rand()

Rem / Note / ' / && - Instruction

Description

To insert comments on a line of the script. The line will be considered as a comment up to the end of the
line.

Syntax

Rem comment line
or

Note comment line
or

' comment line
or

&& comment line

Returns

No return value.

Comments

The four comment versions are equivalent. They have been included to allow use of the programming
style preferred.

Example

If value > maximum
Return 0 Rem finishes if too large

EndIf

Request - Function

Description

Imports data from an element in the same or another DS Lab model, allowing automatic linking between
models.

Syntax

Requested_value=Request ("topic","item[[step notation]]")

The quotation marks inside the parentheses are in bold type to emphasize that their use is compulsory
with this function. The brackets enclosing the step notation argument are in bold type to emphasize that
they are compulsory if a step notation reference is specified.

Returns

The value requested if the data transmission was successful, otherwise the error value #REQUEST.

Comments

The topic argument is the name of a DS Lab model (as it appears in the model window, complete with the
extension .LAB); the item argument is the name of the element from which the data is to be taken. The
step notation argument is optional. Its default value is the current step in the model receiving the data.
The model from which data is requested must be open at the time of execution.

The Request function cannot be used with tables.

See Also

DDEExecute, DDEPoke, DDERequest, Execute, Poke

Example

The script:

Request ("Model1.lab","Income[2]")

returns the value of the Income variable in the model MODEL1 at the second step.

Return - Instruction

Description

Interrupts the script and returns the value of the specified expression.

Syntax

Return expression

Returns

The value of the specified expression.

Comments

The instructions If ... Else, Do Case ... EndCase, Do While ... EndDo and For ... Next must always use
the instruction Return to finish the script.

Example

Return 5+7

Round - Function

Description

Rounds an expression to the nearest integer.

Syntax

integer=Round(expression)

Returns

The integer closest to the argument. If the decimal part of the argument is exactly .5, it is rounded up.

See Also

Int

Example

The script:

Round (3.5)

returns the value 4.

Sin - Function

Description

Calculates the sine of an angle in radians.

Syntax

sine=Sin(expression)

Returns

The sine of the angle.

Attempts to find the sine of very large values may generate the error values #PLOSS, representing a
partial loss of significance, or #TLOSS, representing a total loss of significance.

See Also

Tan, Cos, ArcSin, ArcCos, ArcTan, SinH, CosH, TanH

Example

The script:

Sin (PI / 4)

returns the value 0.70711, that is the sine of the angle measuring radians.

SinH - Function

Description

Calculates the hyperbolic sine.

Syntax

hyperbolic_sine=SinH(expression)

Returns

The hyperbolic sine.

See Also

Tan, Cos, ArcSin, ArcCos, ArcTan, Sin, CosH, TanH

Example

The script:

SinH(PI)

returns the value 11.54874.

SPEquityCallOption - Function

Description

Calculates the price of an Equity Call Option.

Syntax

call_option = SPEquityCallOption(
current_share_price,

 call_exercise_price,
time_to_expiration,
internal_rate_of_return,
variance_of_stock_price)

Returns

The call option value.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#SP) and one of the following numbers:
/1 current price or call price not valid;
/2 internal rate of return not valid;
/18 division by zero in calculation.

Comments

This function uses the Black-Scholes model (F. Black and M. Scholes, The Pricing of Options and
Corporate Liabilities, Journal of Political Economy, 1973.) It makes several assumptions:

- No taxes or transaction costs;

- No dividends paid on the stock;

- No short sales restrictions;

- Riskless borrowing and lending available at the discount rate;

- Instantaneous portfolio adjustment;

- Option exercised at maturity.

Returns on treasury bills are typically used for the risk free return estimate.
Time to expiration, variance and rate of return must all refer to the same time period.

See Also

SPEquityRateOfReturn

Example

The current price of a security is $62.00. Historically, the standard deviation of returns for a six month
holding period has been 0.26. The strike price of the call is $66.00, expiring in 45 days. The yield on six
monthly treasury bills is 6.25%.

current_price = 62

call_price = 66
time_to_expiry = 45 / (6*30)
internal_rate_of_return = 0.0625/2
price_variance = 0.262
SPEquityCallOption(

current_price,
call_price,
time_to_expiry,
internal_rate_of_return,
price_variance)

The theoretical value of the option is $4.89.

SPEquityRateOfReturn - Function

Description

Calculates the Internal Rate of Return of an equity, based on dividend projections.

Syntax

rate_of_return = SPEquityRateOfReturn(
latest_year_dividend,
current_stock_price,
years_in_projection,
annual_dividend_growth)

Returns

The Equity Internal Rate of Return.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#SP) and one of the following numbers:
/1 current price or percentage dividend growth is not valid;
/14 number of years is less than 1.

Comments

This is a typical technique for pricing shares. The function simulates a quarterly dividend cash flow. The
rate of return calculated is calculated on the basis of this cash flow and the shares current market price.
Transaction costs are not included. The dividend remains constant for four quarters and then increases by
the growth factor specified.

See Also

SPEquityCallOption

Example

We want to calculate the internal rate of return of a share currently priced at $62.00. The last dividend
paid was $3.50 and a growth of 22% per year is expected.

latest_year_dividend = 3.50
current_stock_price = 62.00
years_in_projection = 3
annual_dividend_growth = 0.22
SPEquityRateOfReturn(

latest_year_dividend,
current_stock_price,
years_in_projection,
annual_dividend_growth)

The Internal Rate of Return on the stock under these conditions is 19.22%.

SPPortfolioAveragePeriodicReturn - Function

Description

Calculates the Portfolio Average Periodic Return from a series of cash flows and periodic valuations of the
portfolio.

Syntax

average_return = SPPortfolioAveragePeriodicReturn(
valuation_reference_period,
connected element containing cash flows [array notation],
connected element containing periodic valuations [array notation])

The brackets after the connected element containing array arguments are in bold type to emphasize that
their use is compulsory with this function.

Returns

The portfolios Average Periodic Return.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#SP) and one of the following numbers:
/2 a valuation is less than zero;
/4 the reference period is not valid;
/7 insufficient number of values in the array;
/9 calculated value out of range;
/10 the maximum number of iterations was exceeded without converging on a value for the average

periodic return.

Comments

The Average Periodic Return of the portfolio.

The cash flows are assumed to take place at the start of each period. They will have positive or negative
values as money is invested or withdrawn, deposits being positive and withdrawals negative.

The values for the cash flows and periodic valuations of the portfolio are passed to the function by
specifying two arrays of values contained in two connected elements (or two parts of the same connected
element, e.g. a table). The array notation must be in brackets. The two arrays must correspond; for
example, after the cash flow given in the third value of the Cash Flows array, the portfolio valuation will be
given by the third value of the Valuations array.

For example, suppose that a table named Cash Flows and Valuations is connected, containing the cash
flows in the first row and the periodic valuations in the second. In this case, therefore, both the arrays are
contained in the same connected element.

The connected element containing cash flows [array notation] argument might contain the following
reference:

Cash Flows and Valuations [R1C1:R1C6]
while the connected element containing periodic valuations [array notation] argument could contain the
following reference with the same number of values:

Cash Flows and Valuations [R2C1:R2C6]

See Also

SPPortfolioStandardDeviation1, SPPortfolioStandardDeviation2, SPPortfolioRateOfReturn,
SPPortfolioTimeWeightedRateOfReturn

Example

Consider a portfolio with the following characteristics:

PERIOD VALUATIONS CASH FLOWS

1 $ 1000 $ 980

2 $ 2000 $ 1050

 3 $ 3000 $ 950

4 $ 3000 $ -100

We want to know its average return.

valuation_reference_period = ANNUAL
SPPortfolioAveragePeriodicReturn(

valuation_reference_period,
Cash Flows and Valuations [R2C3:R5C3],
Cash Flows and Valuations [R2C2:R5C2])

The Portfolio Average Periodic Return is 1,19%.

SPPortfolioRateOfReturn - Function

Description

Calculates the Internal Rate of Return of a stock portfolio from an array of cash flows and periodic
valuations.

Syntax

rate_of_return = SPPortfolioRateOfReturn(
valuation_reference_period,
connected element containing cash flows [array notation],
connected element containing periodic valuations [array notation])

The brackets after the connected element containing array arguments are in bold type to emphasize that
their use is compulsory with this function.

Returns

The Portfolios Internal Rate of Return.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#SP) and one of the following numbers:
/2 a valuation is less than zero;
/4 the reference period is not valid;
/7 insufficient number of values in the array;
/9 calculated value out of range;
/10 the maximum number of iterations was exceeded without converging on a value for the rate of

return.
/19 insufficient memory.

Comments

This function calculates a portfolios Internal Rate of Return.

This index weights each period with the value of the portfolio at the start of the period.

The cash flows are assumed to take place at the start of each period. They will have positive or negative
values as money is invested or withdrawn, deposits being positive and withdrawals negative.

The values for the cash flows and periodic valuations of the portfolio are passed to the function by
specifying two arrays of values contained in two connected elements (or two parts of the same connected
element, e.g. a table). The array notation must be in brackets. The two arrays must correspond; for
example, after the cash flow given in the third value of the Cash Flows array, the portfolio valuation will be
given by the third value of the Valuations array.

For example, suppose that a table named Cash Flows and Valuations is connected, containing the cash
flows in the first row and the periodic valuations in the second. In this case, therefore, both the arrays are
contained in the same connected element.

The connected element containing cash flows [array notation] argument might contain the following
reference:

Cash Flows and Valuations [R1C1:R1C6]

while the connected element containing periodic valuations [array notation] argument could contain the
following reference with the same number of values:

Cash Flows and Valuations [R2C1:R2C6]

See Also

SPPortfolioStandardDeviation1, SPPortfolioStandardDeviation2,
SPPortfolioAveragePeriodicReturn, SPPortfolioTimeWeightedRateOfReturn

Example

Consider a portfolio with the following characteristics:

PERIOD VALUATIONS CASH FLOWS

1 $ 1000 $ 980

2 $ 2000 $ 1050

 3 $ 3000 $ 950

4 $ 3000 $ -100

We want to know its Internal Rate of Return.

valuation_reference_period = ANNUAL
SPPortfolioRateOfReturn(

valuation_reference_period,
Cash Flows and Valuations [R2C3:R5C3],
Cash Flows and Valuations [R2C2:R5C2])

The Internal Rate of Return is 1.33%.

SPPortfolioStandardDeviation1 - Function

Description

Calculates the Standard Deviation of a portfolios average return.

Syntax

standard_deviation = SPPortfolioStandardDeviation1(
connected element containing expected returns of components [array notation],
connected element containing proportions of the portfolio per component [array notation],
connected element containing standard deviation for each component [array notation],
connected element containing correlation matrix of the components [array notation])

The brackets after the connected element containing array arguments are in bold type to emphasize that
their use is compulsory with this function.

Returns

The Standard Deviation of the portfolios average return.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#SP) and one of the following numbers:
/2 a component has a negative weight (portfolio percentage);
/3 a component has an average return greater, in absolute value, than 100%;
/4 the weights total more than 1;
/5 the absolute value of a correlation value is greater than 100%;
/6 calculated value out of range (perhaps because one of the components or correlation values is not

initialized)

Comments

This function calculates the Standard Deviation of a portfolios average return.

The Standard Deviation is calculated from the weighted average of the deviations of the components,
taking account of their correlations. This adjustment is made to reflect the fact that the returns of the
different components are interrelated.

Together with the Portfolio Average Return, which is the weighted average of the returns of the
components, the Standard Deviation measures the portfolios efficiency. If the Average Return of two
portfolios is the same, the one with the smaller Standard Deviation is the more efficient.

In all the arguments, percentages are expressed as decimal fractions: for example 0.55, not 55%.

The values are passed to the function by specifying four arrays of values contained in four connected
elements (or different parts of the same connected element, e.g. a table). The array notation must be in
brackets.

The first three arguments containing array notation correspond; for example, the third value of the
Expected Returns array represents the return of the component occupying a percentage of the portfolio
equal to the third value of the Portfolio Percentage array, and its standard deviation is the third value of
the corresponding array. The fourth argument, the correlation matrix, must be passed as an array in the
following order, where (R(i,j) is the correlation between components i and j. Assuming a series containing
n components:

R(1,2), R(1,3), R(1,4), ..., R(1,n),
R(2,3), R(2,4), ..., R(2,n),

R(3,4), ..., R(3,n),
...
R(n-1,n)

For example, suppose that a table named Component Values is connected to the function and that the
values of the first three arrays are in the first three rows and the correlation matrix in the fourth. In this
case all the arrays therefore refer to the same connected element. Supposing a portfolio with four
components, the following four arrays give the values of the four arguments:

connected element containing expected returns of components [array notation]:
Component Values [R1C1:R1C4]

connected element containing proportions of the portfolio per component [array notation]:
Component Values [R2C1:R2C4]

connected element containing standard deviation for each component [array notation]:
Component Values [R3C1:R3C4]

connected element containing correlation matrix of the components [array notation]:
Component Values [R4C1:R4C6]

The matrix array contains six values, the number of different pairs among the four components.

See Also

SPPortfolioStandardDeviation2

Example

A portfolio is composed of 50% shares, 25% bonds and the remaining 25% cash. Their characteristics are
respectively:

EXPECTED RETURN STANDARD DEVIATION

SHARES 12% 17%

BONDS 9% 9%

CASH 6% 3.5%

CORRELATIONS

SHARES/BONDS 0.12

SHARES/CASH -0.23

BONDS/CASH 0.2

We want to know the Standard Deviation of the portfolios average return.

SPPortfolioStandardDeviation1(
portfolio1 [R2C2:R4C2],
portfolio1 [R2C4:R4C4],
portfolio1 [R2C3:R4C3],
portfolio1 [R7C2:R9C2])

The standard deviation of this portfolio is 8.95%.

SPPortfolioStandardDeviation2 - Function

Description

Calculates the Standard Deviation of a portfolios Average Return from a series of cash flows and periodic
valuation of the portfolio.

Syntax

standard_deviation = SPPortfolioStandardDeviation2(
valuation_reference_period,
connected element containing cash flows [array notation],
connected element containing periodic valuations [array notation])

The brackets after the connected element containing array arguments are in bold type to emphasize that
their use is compulsory with this function.

Returns

The Standard Deviation of the portfolios average return.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#SP) and one of the following numbers:
/2 a valuation is less than zero;
/4 the reference period is not valid;
/7 insufficient number of values in the array;
/9 calculated value out of range;
/10 the maximum number of iterations was exceeded without converging on a value for the standard

deviation.
/19 insufficient memory.

Comments

This function calculates the Standard Deviation of the portfolios average return.

Together with the Portfolio Average Return, the Standard Deviation is the tool which measures the
efficiency of a portfolio: if the Average Return of two portfolios is the same, the one with the smaller
Standard Deviation is the more efficient.

The cash flows are assumed to take place at the start of each period. They will have positive or negative
values as money is invested or withdrawn, deposits being positive and withdrawals negative.

The values for the cash flows and periodic valuations of the portfolio are passed to the function by
specifying two arrays of values contained in two connected elements (or two parts of the same connected
element, e.g. a table). The array notation must be in brackets. The two arrays must correspond; for
example, after the third value of the Cash Flows array the portfolio valuation will be represented by the
third value of the Valuations array.

For example, suppose that a table named Cash Flows and Valuations is connected, containing the cash
flows in the first row and the periodic valuations in the second. In this case, therefore, both the arrays are
contained in the same connected element.

The connected element containing cash flows [array notation] argument might contain the following
reference:

Cash Flows and Valuations [R1C1:R1C6]

while the connected element containing periodic valuations [array notation] argument could contain the
following reference with the same number of values:

Cash Flows and Valuations [R2C1:R2C6]

See Also

SPPortfolioStandardDeviation1, SPPortfolioRateOfReturn,
SPPortfolioTimeWeightedRateOfReturn, SPPortfolioAveragePeriodicReturn

Example

Consider a portfolio with the following characteristics:
PERIODVALUATIONSCASH FLOWS

1 $ 1000 $ 980
2 $ 2000 $ 1050

 3 $ 3000 $ 950
4 $ 3000 $ -100

We want to know its Standard Deviation.

valuation_reference_period = ANNUAL
SPPortfolioStandardDeviation2(

valuation_reference_period,
Cash Flows and Valuations [R2C3:R5C3],
Cash Flows and Valuations [R2C2:R5C2])

The Standard Deviation of the portfolio is 2.53%.

SPPortfolioTimeWeightedRateOfReturn - Function

Description

Calculates the Time Weighted Rate of Return (all periods given the same weight) of a portfolio from a
series of cash flows and periodic valuations of the portfolio.

Syntax

time_weighted_rate_of_return =
 SPPortfolioTimeWeightedRateOfReturn(

valuation_reference_period,
connected element containing cash flows [array notation],
connected element containing the periodic valuation [array notation])

The brackets after the connected element containing array arguments are in bold type to emphasize that
their use is compulsory with this function.

Returns

The Time Weighted Rate of Return.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#SP) and one of the following numbers:
/2 a valuation is less than zero;
/4 the reference period is not valid;
/7 insufficient number of values in the array;
/9 calculated value out of range;
/10 the maximum number of iterations was exceeded without converging on a value for the rate of

return.
/19 insufficient memory.

Comments

This function calculates the geometric average rate of return with each period weighted equally. This
indicator can be useful in comparing a portfolios performance with other investments because it is
independent of cash flow timings.

The cash flows are assumed to take place at the start of each period. They will have positive or negative
values as money is invested or withdrawn: deposits are positive and withdrawals negative.

The values for the cash flows and periodic valuations of the portfolio are passed to the function by
specifying two arrays of values contained in two connected elements (or two parts of the same connected
element, e.g. a table). The array notation must be in brackets. The two arrays must correspond; for
example, after the third dividend in the Cash Flows array, the portfolio valuation will be represented by the
third value in the Valuations array.

For example, suppose that a table named Cash Flows and Valuations is connected, containing the cash
flows in the first row and the periodic valuations in the second. In this case, therefore, both the arrays are
contained in the same connected element.

The connected element containing cash flows [array notation] argument might contain the following
reference:

Cash Flows and Valuations [R1C1:R1C6]

while the connected element containing periodic valuations [array notation] argument could contain the
following reference with the same number of values:

Cash Flows and Valuations [R2C1:R2C6]

See Also

SPPortfolioStandardDeviation1, SPPortfolioStandardDeviation2, SPPortfolioRateOfReturn,
SPPortfolioAveragePeriodicReturn

Example

Consider a portfolio with the following characteristics:
PERIOD VALUATIONS CASH FLOWS

1 $ 1000 $ 980
2 $ 2000 $ 1050

 3 $ 3000 $ 950
4 $ 3000 $ -100

We want to know its rate of return, regardless of the timing of cash flows.

valuation_reference_period = ANNUAL
SPPortfolioRateOfReturn(

valuation_reference_period,
Cash Flows and Valuations [R2C3 : R5C3],
Cash Flows and Valuations [R2C2 : R5C2])

The rate of return, independent of the timing of the cash flows, is 1.16%.

Sqrt - Function

Description

Calculates the square root of an expression.

Syntax

square_root = Sqrt(expression)

Returns

The square root of the argument.

If the argument is less than zero, the error value #SQRT/<0 is returned.

See Also

Exp

Example

The script:

Sqrt(9)

returns the value 3.

StandardDeviation - Function

Description

Calculates the Standard Deviation for an array of values.

Syntax

standard_deviation = StandardDeviation(
connected element containing array of values [array notation])

The brackets after the connected element containing array of values argument are in bold type to
emphasize that their use is compulsory with this function.

Returns

The standard deviation of the array.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#STAT) and one of the following numbers:
/9 calculated value out of range.

Comments

This function calculates the standard deviation of the array of values.

The array must be passed to the function by specifying the name of the connected element. The array
notation must be in brackets.

Consider a hypothetical connected series called Values. The connected element containing array [array
notation] might be:

Values [1:24]

See Also

Mean, Variance

Example

To find the standard deviation yield of the following portfolio:

 YIELDS WEIGHTS
Bonds 0.085 0.25
Shares 0.132 0.5
Short Term Securities 0.07 0.25

StandardDeviation(Values 2 [R2C2 : R4C2])

The Standard Deviation is 0.02641.

StandardErrorOfBeta - Function

Description

Calculates the Standard Error of Beta of two arrays of values.

Syntax

standard_error = StandardErrorOfBeta(
connected element containing dependent array [array notation]
connected element containing independent array [array notation])

The brackets after the connected element containing array arguments are in bold type to emphasize that
their use is compulsory with this function.

Returns

The standard error of the Beta index.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#STAT) followed by one of the following numbers:
/1 number of observations less than 3;
/9 calculated value out of range;
/18 division by zero.

Comments

This function gives the error in the estimation of Beta; it is a basic tool of stock market analysis. Given a
securitys quotations as a dependent array and a market index representing the sector or market segment
of the security as an independent array, the function calculates the Standard Error of Beta of the security
(Equity Standard Error of Beta).

The beta index represents the slope of the regression line: it expresses the change in the security price
for a unit change in the index. Beta values greater than 1 or less than -1 represent securities tending to
react to factors affecting the index with proportionately greater volatility.

In the case of a security, the values for the security price and the index are passed to the function by
specifying two arrays of values contained in two connected elements (or two parts of the same connected
element, e.g. a table). The array notation must be in brackets. The two arrays must correspond; for
example, the third value of the Bond array represents the quotation for the day on which the index value
is represented by the third value of the Index array.

Thus the connected element containing dependent array [array notation] argument might contain the
following reference:

Bond [1:24]

while the connected element containing independent array [array notation] argument could contain the
following reference with the same number of values:

Index[1:24]

See Also

Alpha, Beta, CorrelationCoefficient, StandardErrorOfRegression

Example

These are the latest closing values of a share and the value of a hypothetical index for the same period:

Share A (dep.) Index (indep.)
 311.850 37.125
 312.600 37.000
 309.140 35.500
 307.570 35.875
 310.490 36.750

To find the error in the Beta coefficient of the two arrays of values:

StandardErrorOfBeta(
values 1[R2C2:R6C2],
values 1[R2C3:R6C3])

The average error in the estimation of Beta is 0.83157.

StandardErrorOfRegression - Function

Description

Calculates the Standard Error of Regression for two arrays of values.

Syntax

standard_error = StandardErrorOfRegression(
connected element containing dependent array [array notation]
connected element containing independent array [array notation])

The brackets after the connected element containing array arguments are in bold type to emphasize that
their use is compulsory with this function.

Returns

The Standard Error of Regression.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#STAT) and one of the following numbers:
/1 number of observations less than 3;
/9 calculated value out of range;
/18 division by zero.

Comments

This function calculates the Standard Error of Regression of two arrays.

It can be used in stock market analysis by passing it the quotations of a security as a dependent array
and a market index representing the sector or market segment as an independent array.

The two arrays of prices and index values are passed to the function by specifying two arrays of values
contained in two connected elements (or two parts of the same connected element, e.g. a table). The
array notation must be in brackets. The two arrays must correspond: for example, the third value of the
Bond array represents the quotation for the day on which the index value is represented by the third value
of the Index array.

For example, the connected element containing dependent array [array notation] argument might contain
the following reference:

Bond [1:27]

while the connected element containing independent array [array notation] argument could contain the
following reference with the same number of values:

Index [1:27]

See Also

Alpha, Beta, CorrelationCoefficient, StandardErrorOfBeta

Example

These are the latest closing values of a share and the value of a hypothetical index for the same period,

which are contained in a table called Values 1:
Share A (dep.) Index (indep.)
 311.850 37.125
 312.600 37.000
 309.140 35.500
 307.570 35.875
 310.490 36.750

To find the error of the regression line of the two arrays of values:

StandardErrorOfRegression(
values 1 [R2C2:R6C2],
values 1 [R2C3:R6C3])

The average error in estimating the dependent values from the regression line is 1.19967.

STEndingBalance - Function

Description

Calculates the ending balance for an interest bearing short term deposit, using the 360/30-day
convention.

Syntax

end_balance = STEndingBalance(
starting_balance,
period_starting_date,
maturity_date,
compounding_period,
short_period_option,
annual_yield)

Returns

The balance at maturity.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#ST) and one of the following numbers:
/1 starting value or yield is not valid;
/4 compounding period is out of range (WEEKLY and BIWEEKLY are not accepted);
/14 either maturity date or purchase date is invalid.

Comments

This routine should only be used for an account paying interest on a 360/30-day basis. It is the short
period counterpart of FVFutureValueOfPresentValue.

For daily compounding (compounding_period is DAILY), the periods are normal length days, otherwise
the number of periods is based on the 360/30 convention, under which a year is 360-days and all months
are 30-day.

See Also

FVFutureValueOfPresentValue, STNotePrice1, STNotePrice3, STNoteYield1, STNoteYield2,
STNoteDiscount2, STNoteDiscount3.

Example

An 18 month deposit pays 8.5% interest compounded daily on a 360-day year. The period begins on June
15 1990.

deposit = 100000
starting_date = Date("June 15 1990")
maturity_date = Date("December 15 1991")
compounding_period = DAILY
short_period_option = CMPND
yield_rate = 0.085
STEndingBalance(

deposit,

starting_date,
maturity_date,
compounding_period,
short_period_option,
yield_rate)

The deposit will grow to $113,811.53.

STNoteDiscount2 - Function

Description

Calculates the discount of a note (short term security).

Syntax

discount = STNoteDiscount2(
cost,
days_to_maturity,
face_value,
calendar_option)

Returns

The discount of the note.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#ST) and the following number:
/1 face value or number of days is not valid.

Comments

This function calculates the discount rate of a note from readily accessed information such as its price
and maturity.

The calendar option argument must take one of the following two values:

- C360 to use the 360/30-day convention, which stipulates a 360-day year and a 30-day month;

- C365 for exact year and month length.

If using a quoted price as the cost (93.25 indicates that the note is selling for 93.25% of its face value),
use 100 for the face_value argument.

See Also

STEndingBalance, STNotePrice1, STNotePrice3, STNoteYield1, STNoteYield2, STNoteDiscount3.

Example

To calculate the discount rate applied to a note with the following characteristics:

price = 99.63
days_to_maturity = 15
face_value = 100
calendar_opt = C360
STNoteDiscount2(

price,
days_to_maturity,
face_value,
calendar_opt)

The discount will be 8.88% (on a 360-day basis).

STNoteDiscount3 - Function

Description

Calculates the discount of a note (short term security).

Syntax

discount = STNoteDiscount3(
days_to_maturity,
expected_return_rate,
calendar_option)

Returns

The discount of the note.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#ST) and the following number:
/1 number of days is not valid.

Comments

This function calculates the discount rate of a note from its expected rate of return.

The calendar option argument must take one of the following two values:

- C360 to use the 360/30-day convention, which stipulates a 360-day year and a 30-day month;

- C365 for exact year and month length.

See Also

STEndingBalance, STNotePrice1, STNotePrice3, STNoteYield1, STNoteYield2, STNoteDiscount2.

Example

To calculate the discount rate applied to a note with the following characteristics:

days_to_maturity = 91
expected_return = 0.07125
calendar_opt = C360
STNoteDiscount3(

days_to_maturity,
expected_return,
calendar_opt)

The discount will be 7% (on 360-day basis).

STNotePrice1 - Function

Description

Calculates the price of a note (short term security).

Syntax

price = STNotePrice1(
days_to_maturity,
discount_rate,
calendar_option)

Returns

The current price of a discounted note as a percentage of face value.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#ST) followed by one of the following numbers:
/1 number of days is not valid;
/9 cumulative discount exceeds 100%.

Comments

This function calculates the current cost of a discounted note as a percentage of its face value on the
basis of its characteristics.

The calendar option argument must take one of the following two values:

- C360 to use the 360/30-day convention, which stipulates a 360-day year and a 30-day month;

- C365 for exact year and month length.

See Also

STNotePrice3, STEndingBalance, STNoteYield1, STNoteYield2, STNoteDiscount2,
STNoteDiscount3

Example

To calculate the price of a note with the following characteristics:

days_to_maturity = 182
discount = 0.0779
calendar_opt = C360
STNotePrice1(

days_to_maturity,
discount,
calendar_opt)

The note is priced at 96.06.

STNotePrice3 - Function

Description

Calculates the price of a note (short term security).

Syntax

price = STNotePrice3(
days_to_maturity,
expected_return_rate,
calendar_option)

Returns

The current price of the note as a percentage of face value.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#ST) and the following number:
/1 number of days is not valid;

Comments

This function calculates the cost of note as a percentage of its face value, using the expected return rate.

The calendar option argument must take one of the following two values:

- C360 to use the 360/30-day convention, which stipulates a 360-day year and a 30-day month;

- C365 for exact year and month length.

See Also

STNotePrice1, STEndingBalance, STNoteYield1, STNoteYield2, STNoteDiscount2,
STNoteDiscount3

Example

To calculate the price of a note with the following characteristics:

days_to_maturity = 91
expected_return = 0.07125
calendar_opt = C360
STNotePrice3(

days_to_maturity,
expected_return,
calendar_opt)

The price will be 98.23.

STNoteYield1 - Function

Description

Calculates the yield of a note (short term security).

Syntax

yield = STNoteYield1(
days_to_maturity,
discount_rate,
calendar_option)

Returns

The yield (rate of return) of the note.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#ST) and one of the following numbers:
/1 face value or number of days is not valid;
/9 cumulative discount exceeds 100%.

Comments

This function calculates the yield of a note on the basis of its characteristics.

The calendar option argument must take one of the following two values:

- C360 to use the 360/30-day convention, which stipulates a 360-day year and a 30-day month;

- C365 for exact year and month length.

See Also

STNoteYield2, STEndingBalance, STNoteDiscount2, STNoteDiscount3,STNotePrice1,
STNotePrice3

Example

To find the yield of a twenty-six week treasury bill sold at a discount of 7.79%.

days_to_maturity = 182
discount = 0.0779
calendar_opt = C360
STNoteYield1(

days_to_maturity,
discount,
calendar_opt)

The yield is 8.11%.

STNoteYield2 - Function

Description

Calculates the yield of a note (short term security).

Syntax

yield = STNoteYield2(
price,
days_to_maturity,
face_value,
calendar_option)

Returns

The yield of a note.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#ST) and the following number:
/1 face value or number of days is not valid.

Comments

This function calculates the yield rate of a note from readily accessed information such as its price and
maturity.

The calendar option argument must take one of the following two values:

- C360 to use the 360/30-day convention, which stipulates a 360-day year and a 30-day month;

- C365 for exact year and month length.

If using a quoted price (93.25 indicates that the note is selling for 93.25% of its face value) as the price
argument, use 100 for the face_value argument.

See Also

STNoteYield1, STEndingBalance, STNotePrice1, STNotePrice3, STNoteDiscount2,
STNoteDiscount3.

Example

To calculate the yield of a note with the following characteristics:

price = 99.63
days_to_maturity = 15
face_value = 100
calendar_opt = C360
STNoteYield2(

price,
days_to_maturity,
face_value,
calendar_opt)

The yield will be 8.91%.

Sum - Function

Description

Returns the sum of the values in an array.

Syntax

sum_value = Sum(connected element [array notation])

Returns

The sum of the values of the array.

See Also

SumAll

Example

After connecting a series called Array, the Sum function could be used as follows to obtain the sum of the
first twelve values:

Sum(array[1:12])

SumAll - Function

Description

Returns the sum of the values for the current step of all the elements connected to a variable.

Syntax

Total = SumAll()

Returns

The sum of the values for the current step of all the elements connected to the variable.

Comments

In the case of a variable representing the sum of all the elements connected to it, this function eliminates
the need to specify in the script the names of all the connected elements. If additional elements are
connected to the variable, their values will be automatically added to the value of the variable without the
user having to add their names to the script.

See Also
Sum

Example
A variable has three elements connected to it, whose values for the current step are 3, 58 and 24. The
script:
SumAll()
will return the value 85 for the current step.

SystemDate - Function

Description

Returns the system date in internal format.

Syntax

internal_date = SystemDate()

Returns

The date in internal format.

See Also

Date

Example

The following script, executed on September 20 1993:

SystemDate()

returns the value 19930920

Tan - Function

Description

Calculates the tangent of an angle in radians.

Syntax

Tangent = Tan(expression)

Returns

The tangent of the angle.

In the case of an angle near PI/2, an #OVERFLOW error may be generated.

Attempts to find the tangent of very large values may generate the error values #PLOSS, representing a
partial loss of significance, or #TLOSS, representing a total loss of significance.

See Also

Sin, Cos, ArcSin, ArcTan, SinH, CosH, TanH

Example

The script:

Tan(PI)

returns the value 0.

TanH - Function

Description

Calculates the hyperbolic tangent.

Syntax

Hyperbolic_tangent = TanH(expression)

Returns

The hyperbolic tangent.

See Also

Sin, Cos, Tan, ArcSin, ArcTan, SinH, CosH

Example

The script:

TanH(PI)

returns the value 0.99627.

Trend1 - Function

Description

Calculates the next occurring value on a trend line. The trend line is based on a given array and is
calculated using the least squares procedure.

Syntax

trend = Trend1(element [array notation])

The brackets after the element argument are in bold type to emphasize that their use is compulsory with
this function.

Returns

The next number in the specified series.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this function (#TREND1) and one of the following numbers:
/1 less than 3 values specified in the array;
/9 calculated value out of range;
/18 division by zero.

Comments

This function uses the least squares procedure to estimate the parameters of a regression line, which is
then used to calculate the number following the last one given in the series.

The independent variable in this case consists of the series of natural numbers (1, 2, 3...).

Obviously, in many situations the linear trend given by this function will not give any degree of predictive
accuracy.

See Also

Alpha, Beta, Trend2, Trend3

Example

Suppose we want to forecast the average dollar-lire exchange rate for April based on the actual rates for
the three months prior, January through March. First, place a series element on the model page, name it
Actual Rates and enter the following values for the first three steps:

1320 1420 1457

Create a variable element named Forecasted Rate and connect to it the first element. Enter as the script
for the variable the following:

Trend1 (Actual Rates [1 : 3])

This will generate the forecasted average dollar-lire exchange rate for April of 1536.

Trend2 - Function

Description

Calculates the value at the specified point on a trend line. The trend line is based on a given array and is
calculated using the least squares procedure.

Syntax

trend = Trend2(element [array notation], position)

The brackets after the element argument are in bold type to emphasize that their use is compulsory with
this function.

Returns

The number corresponding to the specified position in the specified array.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this function (#TREND2) and one of the following numbers:
/1 less than 3 values specified in the array;
/9 calculated value out of range;
/18 division by zero.

Comments

This function uses the Least Squares procedure to estimate the parameters of a regression line, which is
then used to calculate the number corresponding to a specified position in the series.

The independent variable in this case consists of the series of natural numbers (1, 2, 3...).

Obviously, in many situations the linear trend given by this function will not give any degree of predictive
accuracy.

See Also

Alpha, Beta, Trend1, Trend3

Example

In this example we will forecast the average dollar-lire exchage rate for the current month based on the
actual rates of three months, January through March. First, place a series element on the model page,
name it Actual Rates and enter the following values for the first three steps:

1320 1420 1457

Create a variable element named Forecasted Rates and connect to it the first element. Enter as the
script for the variable the following:

Trend2(Actual Rates [1 : 3] ; SIMSTEP)

This will generate the forecasted average dollar-lire exchange rate for the current month. For example,
in December the value will be 2084.

Trend3 - Function

Description

Calculates the dependent value associated with a given independent value based on a trend line. This
trend line is derived from two arrays (one independent and one dependent) using the least squares
procedure.

Syntax

trend = Trend3(
connected element containing dependent array [array notation],
connected element containing independent array [array notation],
new value of independent array)

The brackets after the connected element containing array arguments are in bold type to emphasize that
their use is compulsory with this function.

Returns

The estimated values of the dependent array.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this function (#TREND3) and one of the following numbers:
/1 less than 3 values specified in the array;
/9 calculated value out of range;
/18 division by zero.

Comments

This function uses the Least Squares procedure to estimate the parameters of a regression line which is
then used to calculate the values of the dependent array, given the values of the independent array, by
the formula:

Dependent array = a + b * independent array

The two arrays are passed to the function by specifying two arrays of values contained in two connected
elements (or two parts of the same connected element, e.g. a table). The array notation must be in
brackets. The two arrays must correspond: for example, the third value of the Security array represents
the quotation for the day on which the index value is represented by the third value of the Index array.

Suppose, for example, that two series called Security and Index are connected.

The connected element containing dependent array [array notation] argument could contain the
reference:

Security [1:24]

while the connected element containing independent array [array notation] argument could contain the
following reference with the same number of values:

Index [1:24]

The Trend3 function will calculate a predicted value for the Security if the index has a value of 37,800
(assuming a linear relationship).

Obviously, in many situations the linear trend given by this function will not give any degree of predictive
accuracy.

See Also

Alpha, Beta, StandardErrorOfBeta, CorrelationCoefficient, StandardErrorOfRegression, Trend1,
Trend2

Example

Given the following recent quotations of a bond and the values of a market index for the same period,
contained in a table called Values 1:

BOND A (dependent) INDEX (independent)
311.85 37.125
312.65 37
309.14 35.5
307.57 35.875
310.49 36.75

we want a price estimate for the bond if the index goes to 37.8.

We therefore write the following script:

Trend3(
values 1[R2C2:R6C2],
values 1[R2C3:R6C3],
37.8)

The price of the security may be expected to rise to $313.63.

Variance - Function

Description

Calculates the variance of an array of values.

Syntax

variance = Variance(connected element containing array [array notation])

The brackets after the connected element containing array argument are in bold type to emphasize that
their use is compulsory with this function.

Returns

The variance of the array.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#STAT) and the following number:
/9 calculated value out of range.

Comments

This function calculates the variance of the array of values. The values must be passed to the function by
specifying the name of the connected element. The array notation must be in brackets.

Consider a hypothetical connected series called Values. An example for the connected element
containing array [array notation] could be:

Values [1:36]

See Also

Mean, StandardDeviation

Example

To find the variance yield of the following portfolio:

 YIELDS WEIGHTS
Bonds 0.085 0.25
Shares 0.132 0.5
Short Term Securities 0.07 0.25

Variance(Values 2 [R2C2 : R4C2])

The Variance is 0.00070.

Week - Function

Description

Finds the week (1-52) of a given date in internal format.

Syntax

This_week=Week(internal_date)

Returns

The number of the week.

If the internal_date argument does not represent a valid date, the error value #WEEK is returned.

See Also

Day, Month, Year, DayWeek, DayYear

Example

If the step unit is DAY or WEEK, the system variable TIME contains the current day in internal format. The
script:

Week(TIME)

will return the number of the current week in the simulation.

WeightedAverage - Function

Description

Calculates the weighted average of a number of values.

Syntax

weighted_average = WeightedAverage(
connected element containing values [array notation],
connected element containing weights [array notation])

The brackets after the connected element containing array arguments are in bold type to emphasize that
their use is compulsory with this function.

Returns

The Weighted Average.

The presence of errors in the arguments will cause the function to return an error value consisting of the
error variable for this class of functions (#STAT) and one of the following numbers:
/1 number of observations less than 3;
/9 calculated value out of range.

Comments

This function calculates the Weighted Average of a number of values.

The values and weights of the inputs are passed to the function by specifying two arrays of values
contained in two connected elements (or two parts of the same connected element, e.g. a table). The
array notation must be in brackets. The two arrays must correspond; for example, the third value of the
Values array corresponds to the element whose weight is in the third position in the Weights array.

For example, the connected element containing values [array notation] might contain the following
reference:

Values [1:24]

while the connected element containing weights [array notation] argument could contain the following
reference with the same number of values:

Weights [R2C1:R2C24]

See Also

Mean, SPPortfolioStandardDeviation1

Example

To find the weighted average yield of the following portfolio:

 YIELDS WEIGHTS
Bonds 0.085 0.25
Shares 0.132 0.5
Short Term Securities 0.07 0.25

WeightedAverage(
values 2 [R2C2 : R4C2],
values 2 [R2C3 : R4C3])

The Weighted Average is 0.10475.

Year - Function

Description

Finds the year of a given date in internal format.

Syntax

This_year=Year(expression)

Returns

The number of the year.

If the internal_date argument does not represent a valid date, the error value #YEAR is returned.

See Also

Day, Week, Month, DayWeek, DayYear

Example

If the step unit is YEAR, the system variable TIME contains the current year in internal format. The script:

Year(TIME)

will return the number of the current year in the simulation.

Accrued Interest

If a bond is traded between interest payments, the sum paid for it includes the interest due for the partial
period during which the seller has held the bond. The buyer then keeps the entire coupon payment when
it falls due.

Annuity

A series of regular payments from an investment. As with a mortgage, each payment of an annuity
includes a portion of the principal invested as well as the interest earned.

Array

A series of values used as data in the script of a DS Lab variable and referenced by means of array
notation.

Bond

For DS Labs purposes, this term is used to include all categories of fixed-interest securities, including
government or public authority bonds and private fixed-interest investments such as debentures.

Bond Cost

The cost of a bond at any given moment is given by its actual market price that is, its face value
multiplied by its discount plus the accrued interest to the date of purchase:

Bond Cost = Discount * Face Value + Accrued Interest

Bond price

The price of a bond is expressed as a percentage of its face value. In DS Lab, it is represented as a
decimal fraction, e.g. 0.925 (equivalent to 92.5%)

Compound Interest

When money is invested at compound interest, the interest earned is automatically added to the principal
and itself earns interest for all subsequent periods.

Compounding Period

The calculating period for compound interest, that is, the intervals at which interest is calculated and
added to the principal. Also called Conversion Period.

The compounding period is represented in DS Lab as the number of periods in a year, and it is generally
advisable to define it by means of the programs predefined financial constants.

A special case is compound interest that is calculated continuously. DS Labs financial functions are able
to cope with this situation by defining the compounding period as CONTINUOUS (value 0).

Connected Element

An element which is graphically connected to a variable by a connection arrow becomes an input to that
variable and is available to be referenced in its script.

Coupon Payment Period

The number of times a year when bond coupons are payable. Depending on the bond, interest payments
may take place annually, twice a year (SEMIANNUAL) or more frequently.

Coupon Rate

The simple interest or nominal interest rate used to calculate the periodic coupons payable on a bond.

Current Step

The step of a DS Lab simulation shown in the Step units list box on the horizontal toolbar, and for which
the values of the elements are shown below each of them in the model window.

Deferred Annuity

An annuity whose payments start at a future date. Until then, compound interest is calculated and is
added to the principal at each compounding period.

Discount

The percentage by which a future value is reduced at the present time. It is calculated on the basis of an
appropriate interest rate, which for this reason is known as the discount rate.

Discount Rate

Used with the Present Value (PV) functions, this is the rate by which the future value is reduced to give
the present value. It may be the inflation rate or the return given by an available alternative investment
such as government bonds.

Effective Rate

The annual interest rate, taking account of the effect of compounding. If the compounding period is the
year, the effective rate is the same as the nominal rate. If it is shorter than a year, the effective rate will be
higher. The more frequently interest is compounded, the greater the difference: the greatest difference is
given by continuous compounding.

Face Value

The nominal value of a bond, which may be sold initially at a lower issue price; its market price is
expressed as a percentage of the face value.

Internal Rate of Return

The discount rate which makes the value of the bonds future cash flows equal to its purchase price, or,
expressed differently, which makes the Net Present Value (NPV) of the cash flows equal to zero.

Local Variable

A script can contain local variables. The first time a local variable is used must be in an assignment; after
that it can be used anywhere it is allowed. It can be reassigned with a new value later in the script. The
local variable exists only during execution of the script in which it was defined: its value is not kept after
the scripts value has been calculated.

Nominal Yield

The nominal yield of a bond is its market price as a percentage of its face value.

Note

In the Short Term (ST) financial functions, this term indicates any kind of short term investment.

Present Value

The calculated value at the present time of cash flows or payments which will take place in the future.

Short Period

A fraction of the interest compounding period. For short periods, simple rather than compound interest is
normally used.

Short Term

The meaning of this term is not rigidly defined in financial jargon, but it usually means less than a year or
less than one interest period. Certificates of Deposit, treasury bills and bank deposit accounts are typical
short term investments. Short term interest is usually calculated using the 360/ 30 day convention,
meaning that for calculation purposes all months are considered as having 30 days and the year 360
days.

Simple Interest

Also known as annual rate or nominal interest. Interest is calculated only on the principal invested and not
on any interest previously earned.

DDE Messages to which DS Lab Responds

You can send the messages listed below from any Windows application to DS Lab by specifying the
following DDE arguments:

Application = "DS Lab"
Topic = "SYSTEM"
Item = one of the following messages:

OPEN (model_name)

RECALCULATE (model_name)

CALCULATE (model_name)

CLOSE (model_name, save_option)

UPDATEDDELINKS (model_name)

With CLOSE, the second argument must be:

0 to close the model without saving it;

1 to save the model before closing.

How to...
Startup Operations
Starting DS Lab
Creating a New Model
Opening a Previously Saved Model
Moving from One Model to Another
Protecting the Model

Graphic Building of the Model
Inserting Elements in the Model

Selecting Elements in the Model
Selecting a Single Element
Selecting a Rectangular Area of the Model
If the Elements to be Selected are Not Adjacent

Moving Elements in the Model
Deleting Elements from the Model
Copying Part of a Model Within the Same Model
Copying Part of One Model to Another
Inserting a Shadow Element
Connecting Another Element to a Variable
Deleting or Changing the Shape of a Connection Arrow
Selecting Overlapping Connection Arrows
Associating a Document with the Model

Defining the Numerical Values of the Model
Defining Variables
Entering Values in a Series
Speeding Up Simulations

Model Formatting Options
Coloring an Element
Defining the Format of Numbers
Converting One Element to Another
Setting the Print Size

Moving Around in the Model
Defining a New Zone of the Model
Moving From One Defined Zone to Another
Searching for an Element
Searching for Undefined Variables
Searching for Variables with Run-Time Errors

Exporting and Importing Data
Exporting Values to Excel
Making Links with Excel
Establishing Input Links from Other DS Lab Models
Establishing Output Links to Other DS Lab Models
Executing a Sub-Model
Importing Data with DDE (DDE Input Procedures)
Exporting Data with DDE (DDE Output Procedures)
Updating DDE Input Links

Starting DS Lab
1. In the Program Manager window, double-click the DS Lab group icon if the window is not already

open.

2. Double-click the DS Lab program icon .

Creating a New Model
1. From the File menu, choose New...
2. In the dialog box which appears, choose Model to start a new model, or Text to open a text file, by

clicking on the desired option button.
3. Choose the OK button to confirm your choice, or Cancel to abandon the creation of a new model/text

file.

Opening a Previously Saved Model
1. From the File menu, choose Open.... A dialog box appears.
2. In the list box on the right, select the directory in which the model was previously saved by clicking on

its name.
3. Select the model in the list box on the left by clicking on its name.
4. Choose the OK button to confirm the opening of the model or Cancel to abandon the operation.

Note: The last four models used are listed at the bottom of the File menu and can be reopened simply by
choosing them from the menu.

Moving from One Model to Another

You can have more than one model open at a time. To move from one model to another:

- Choose the name of the model on which you wish to work from the Window menu.
OR:
- Click on a visible part of the model on which you wish to work.

Protecting the Model
1. Choose the command Password... from the Options menu.
2. Enter the password you have chosen (no more than 8 characters) and press Enter or click on the OK

button.
3. Type the password a second time in the edit box and press Enter or click on the OK button again. If

the two versions are different, you will be asked to start again from scratch.

WARNING: The password can be modified only from within the model. If you subsequently forget it,
the model will be irrevocably lost!

Inserting Elements in the Model
1. Click the tool representing the element you wish to insert in the model.

OR: Choose the desired element from the Model menu.
OR: Press the corresponding short cut key (ALT + one of the function keys F6 to F10).

2. Move the pointer to the part of the model where the element is to be inserted.
3. Click the mouse button.

Selecting a Single Element

1. Select the Selection Arrow tool .
2. Click on the desired element. It is now shown with a broken outline.

Selecting a Rectangular Area of the Model

1. Select the Selection Arrow tool .
2. Move the pointer to the top left corner of the desired area.
3. While keeping the mouse button pressed, drag to the bottom right corner of the area.
4. Release the mouse button. The selected elements are now shown with broken outlines.
5. Any of the selected elements may now be deselected by clicking on it while holding down the
SHIFT key.

If the Elements to be Selected are Not Adjacent

1. Select the Selection Arrow tool .
2. Select the first element by clicking on it.
3. While holding down the SHIFT key, click on the other element(s) to be selected. As each element is
selected, it is shown with a broken outline.

Note: Clicking a second time on a selected element will deselect it.

Moving Elements in the Model
1. If several elements are to moved together, select them.
2. Move the pointer to one of the elements to be moved, depress the mouse button and, keeping it

pressed, drag the element(s) to the new position.
3. Release the mouse button.

Note: The connection arrows automatically move to the new position together with the elements.
However, it may be necessary to move them or change their curvature to improve the appearance
of the model: see Deleting or Changing the Shape of a Connection Arrow.

Deleting Elements from the Model
1. Select the element(s) to be deleted.
2. Open the Edit menu, or click the right mouse button, and choose Delete.

OR: Press the DEL key.
3. A dialog box will appear, asking you to confirm the deletion of the selected elements. Choose OK to

confirm the deletion of the selected element(s), or Cancel to abandon the operation.

Note: When an element is deleted from the model, all its connections with other elements are
automatically deleted as well. If the deleted element was referenced in any formula of the model,
this formula will become indeterminate. A ?, instead of a value, will appear beneath the name of all
the elements whose script refers to the deleted element. Therefore, the user will have to remove
the name of the deleted element from all formulas in the model.

Copying Part of a Model Within the Same Model
1. Select the desired part of the model.
2. Open the Edit menu, or click the right mouse button, and choose Copy (or press CTRL+INS).
3. Move the pointer to the place where you want the copied elements.
4. Open the Edit menu, or click the right mouse button, and choose Paste (or press SHIFT + INS).

A copy of the selected part of the model is inserted in the new position. The new elements will have the
same names as the originals with the addition of a final 2. All the connections between the copied
elements are preserved. The scripts of the new variables and the values of the other copied elements will
be the same as the originals and can be edited in the usual way.

However, if a variable is copied without one or more of the elements connected to it, that element will be
missing from the Connected Elements list box in its script editing box and its value will assume the error
value [?].

The copied section remains selected after copying and can be moved by clicking on one of its elements
and dragging to a new position.

Copying Part of One Model to Another
1. Select the desired part of the model.
2. Open the Edit menu, or click the right mouse button, and choose Copy (or press CTRL+INS).
3. If the destination model is already open, click on a visible part of its window or select its name from the

Window menu. Otherwise, open it from the File menu.
4. Open the Edit menu, or click the right mouse button, and choose Paste (or press SHIFT + INS).

The part of the model that was previously copied is inserted in the new model. To move it, click on one of
the elements in the copied section which is still selected and drag it to the area where you want it.
Once the desired position has been reached, release the mouse button.

Inserting a Shadow Element

1. Select the Shadow tool .
OR: Choose the Shadow command from the Model menu.
OR: Press ALT+F5.

2. Click on the element that is to be shadowed.
3. Move the pointer to the position where the shadow is to be inserted and click.

Notes: If the shadowing operation is done while holding down the SHIFT key, the element and its shadow
change places: that is, the shadow is left in the original position while the primary element is
moved.

A shadow can itself be shadowed. Any number of shadows of the same element can be present in
a model.

Remember that a shadow variable cannot be the destination of connection arrows. The shadow
assumes all the values of the primary element.

While a shadow cannot be placed in a different model from the primary element, the same result can be
obtained by using the Poke and Request funtions in a variables script.

Connecting Another Element to a Variable

1. Select the Connect tool .
OR: Choose the Connect command from the Model menu.

2. Move the pointer to the element from which the connection is to start.
3. Press the mouse button and, keeping it pressed, drag the pointer to the second element.
4. Release the button once you have reached the second element.

Note: The destination of a connection must be a variable.

Deleting or Changing the Shape of a Connection Arrow

To select a connection arrow, click on the dot just behind the head of the arrow.

- Once the arrow has been selected, it can be deleted by pressing the DEL key.

- If it is to be moved, the procedure is as follows:

1. Position the pointer on the black dot behind the head of the arrow.
2. Press the left mouse button.
3. Keeping it pressed, move the mouse until the required curvature is obtained.
4. Release the mouse button.

Selecting Overlapping Connection Arrows

When a variable has a large number of incoming connections, several connection arrows may be
superimposed. To select one of them:

1. Position the pointer on the black dot behind the head of the arrow.
2. Click the left mouse button repeatedly until the desired arrow is selected.

Associating a Document with the Model

1. Click the Text tool .
OR: Choose the Open Text command from the File menu.

A text window will be opened containing a file with the same name as the currently open model
but with the suffix .TXT.
2. Enter the text to accompany the model.
3. To save the text file, choose Save from the File menu.

Defining Variables

Once the model has been drawn, each variable element must have a script assigned to it, which defines it
in mathematical terms.

The procedure is as follows:

1. Move the pointer to the variable for which you want to define the script.
2. Double-click. The dialog box for variables appears.
3. If the variable is to refer to itself in the script, select the Self-Reference check box. The name of the

variable whose script is being edited is added to those available for inclusion in the script.
4. Define the initial value, if required, by clicking on the Starting Value text box and entering the value.
5. Move the cursor onto the Script text box and click.
6. Compose the script. You can do this by selecting the components (connected elements, functions and

keywords) from the appropriate list box.
7. Choose the OK button when you have finished. DS Lab now checks that the syntax of the script is

correct.

Another way of defining a variable is to use the Edit Variables command from the Model menu.

Entering Values in a Series

The values in a series can be entered in two ways:

- through the dialog box which is displayed by double-clicking on the element, or

- through the Edit Series command from the Model menu (or clicking the Edit Series tool

).

The first method allows you to edit only one series at a time, while the second enables you to work on all
the series at one time.

In both cases it is possible, by using the Copy, Cut and Paste commands, to use a series of values
already contained in a DS Lab model or another Windows application such as a spreadsheet.

The values can also be imported from another Windows application and automatically updated every time
they are changed by establishing a DDE link. This can only be done for one series at a time, by double-
clicking on it and then clicking the Paste Link button in the dialog box. For further details, see
Establishing Input Links from Other DS Lab Models and Setting Up a Permanent Import Link from
Another Application.

Speeding Up Simulations

When enabled, the Update Values during Simulation option updates the value of each element on
screen at each step of the simulation. This slows down the simulation, since the screen is redrawn at
each step.

To disable this option:

1. Choose the Model setup... command from the Options menu (or from the popup menu accessed by
clicking the right mouse button with no elements selected).

2. Disable the Update Values during Simulation option by clicking its check box (leaving it empty,
without an X in it).

3. Choose OK to exit from the dialog box.

The updating of the name of the current step in the drop-down list box on the horizontal toolbar also slows
down the simulation. To disable this:

1. Choose the Workspace... command from the Options menu or the popup menu.
2. Disable the Horizontal Toolbar option by clicking its check box (leaving it empty, without an X in it).
3. Choose OK to exit from the dialog box.

Coloring an Element
1. Select the element to be colored.

2. Click the Color tool .
OR: From the Options menu or the popup menu, choose Color...

3. A dialog box appears. Click on the desired color.
4. Choose the OK button to confirm, or Cancel to abandon the operation.

Note: If you would like all new elements added to the model to have the same color, select the Set as
Default option in the dialog box.

Defining the Format of Numbers
1. Select the element whose numerical value is to be expressed in the new format.

2. Select the Number Format tool .
OR: From the Options menu or the popup menu, choose Number Format...

3. A dialog box will appear. Select the desired format.
4. Choose the OK button to confirm, or Cancel to abandon the operation.

Note: If you would like all new elements added to the model to use the same format, select the Set as
Default option in the dialog box.

Converting One Element to Another
1. Select the element to be converted.
2. From the Model menu, choose Convert.
3. From the cascading menu, choose the type of element to which to convert the selected element.

The program warns you that the value(s) of the element (or the script, in the case of a variable) may be
lost as a result of the conversion.

Note: The Convert command works with only one element at a time. It is not possible to use the Convert
command if more than one element has been selected. Nor is it possible to convert a variable
which has other elements connecting to it.

Setting the Print Size

In DS Lab you can define a fixed zoom level for printing. The procedure is as follows:

1. From the Options menu, choose Model setup....
2. In the dialog box which appears, enable the Show Page Breaks option.

3. Click the Zoom Out or Zoom In

 tool until the desired scale is obtained.

4. Click the Set Print Size tool .

OR: From the Model menu, choose Set Print Size.

The current zoom level is now set as that to be used for printing.

5. Click the All Pages tool .

OR: From the View menu, choose All Pages.

The screen now displays a print preview. The vertical and horizontal lines represent page breaks.
To print, select Print from the File menu.

Defining a New Zone of the Model
1. Select the part of the model to be memorized as a view zone.

2. Click the center rectangle of the Zones tool .
OR: From the View menu, choose Zones....
OR: Press F5.

3. A dialog box appears. Click on the Defined Zones text box and type the name of the new zone.
4. Choose the Add button. The name of the new zone is added to the list of defined zones.
5. Choose the Close button to return to the model.

Moving From One Defined Zone to Another

1. Click the center rectangle of the Zones tool .
OR: From the View menu, choose Zones..., OR press F5.

2. A dialog box appears. From the Defined Zones list box, select the zone to which you wish to go .
3. Click the Go button.

Searching for an Element
1. From the View menu, choose Find...

OR: Press F3, OR click the Find tool .
2. In the dialog box which appears, enter the name of the element you want to find.
3. If you want DS Lab to find matches to the whole name of the element click on the Match Whole

Element Name option in the dialog box. When this option is disabled, DS Lab will return element
names which contain the search text. For example, it will find the text cost in both the elements Total
Cost and Marketing Costs.

4. Choose the Find button to start the search.

Matching elements will be presented one at a time and in the order in which they were created.

-To find the next occurrence of the selected name, choose Next from the View menu, or press the F4 key.

Searching for Undefined Variables

DS Lab has a feature which facilitates finding variables with a non-existent or invalid script.

-From the View menu, choose Undefined Variables
OR: Press F6.

The first variable fulfilling the specified criterion will be selected and displayed in the center of the screen.

Choosing the same menu command (or pressing F6) again will display the next variable. When no more
Undefined Variables are found, the following message is displayed: There are no Undefined Variables.

Searching for Variables with Run-Time Errors

The following command locates any variables whose script has returned errors during calculation.

- From the View menu, choose Run-Time Errors
OR: Press F7.

The first variable with a Run-Time error will be selected and displayed in the center of the screen.
Choosing the menu command again (or pressing F7) will display the next variable. When no more run-
time errors are found, the following message is displayed: There are no Run-Time Errors in the current
step.

Exporting Values to Excel

The simplest mode of interaction with Excel, is achieved by selecting the elements to be transferred to the
spreadsheet, after the simulation has been completed, and then clicking the Export to Excel tool

, choosing Export to Excel from the Simulation menu or the popup menu, or
pressing F11.

This creates a new spreadsheet, in which the elements are listed by name in the rows and the simulation
steps in the columns. Data is simply transferred from DS Lab to Excel.

If the simulation is repeated with different parameters and/or formulas for the variables, the same
operations must be repeated to export the new data to Excel.

To summarize:
1. Perform the simulation.
2. Select the first element to be exported to Excel. If there is more than one, move to the second and

click on it while holding down the SHIFT key. Repeat the procedure until all the desired elements have
been selected.

OR: If the elements are adjacent, they may be selected by holding down the left mouse button and
dragging the pointer to the opposite corner of the rectangular area containing the elements.

3. Click the Export to Excel tool, press F11 or choose Export to Excel from the Simulation menu or the
popup menu..

Note 1: In order for DS Lab to properly send the data to Excel, it must know what version of Excel you are
running. To verify this, choose Workspace... from the Options menu and check that the version
shown in the Excel section of the dialog box is correct.

Note 2: It is possible to have Excel automatically create a chart of the values exported. Follow these
steps before exporting to Excel:

1. From the Options menu, choose Workspace....
2. In the dialog box which appears, enable the Create Chart option.

Making Links with Excel

A more sophisticated mode of sending data to Excel, is to create a permanent link with an Excel
spreadsheet. Once you have defined the destination worksheet, the elements to be exported and the cells
in which to position them, the Excel worksheet will be updated automatically every time a new DS Lab
simulation is carried out.

1. Run the simulation.
2. From the Simulation menu, choose Link with Excel... A dialog box appears.
3. Enter the name of the destination sheet in the Worksheet drop-down list box.
4. From the Available Elements list box, select the first element to be linked.
5. Choose Append to add it to the Selected Elements list below the high-lighted element.

OR: Choose Insert to add the element above the highlighted element.
Repeat steps 3 and 4 for each of the elements to be included in the link.
6. In the Row and Column boxes, specify the coordinates of the top left cell of the zone in which to place

the exported values.
7. Choose the OK button to exit from the dialog box.

Note: To remove an element from the Selected Elements list box, select it then click the Remove button.

Establishing Input Links from Other DS Lab Models
1. Make sure the model from which data is to be imported is open.
2. Access the dialog box of the variable which is to import a value from another model.
3. Place the cursor in the Script box.
4. Choose Request from the Functions list box.
5. Specify the name of the model as the first argument and the name of the element whose value is to be

imported as the second, with step notation if required.

If step notation is not used, the value is read from the current step in the source model.

Establishing Output Links to Other DS Lab Models
1. Make sure the model to which data is to be exported is open.
2. Access the dialog box of the variable which is to export a value to another model.
3. Place the cursor in the Script box.
4. Choose Poke from the Functions list box.
5. Specify the name of the model as the first argument and the name of the element to which to export

the value as the second, with step notation if required.

If step notation is not used, the value is sent to the current step of the destination model.

In accordance with the logic of DS Lab, the value can be exported to any step of a series, or to the
starting value (step 0) or past steps of a variable. (Here past step means a step earlier than Simulation
Start for variables where the Always Calculate option is not selected).

Executing a Sub-Model
1. Make sure the model to be executed is open.
2. Access the script from which you want to run the model.
3. Choose Execute from the Functions list box.
4. Specify SYSTEM as the first argument, and CALCULATE (model_name) or RECALCULATE

(model_name) as the second.

Importing Data with DDE (DDE Input Procedures)

There are three ways of importing data into DS Lab through DDE:

1. Exporting the data from a server application (in the Excel macro language, for example, by a Poke
function); this makes a Cold Link from the server application to DS Lab.

2. Requesting the data from DS Lab with the DDERequest function; this too makes a Cold Link from the
server application to DS Lab.

3. Using the Paste Link button within a variables script. This establishes a permanent Hot Link with the
server application, though data is not updated automatically as soon as it changes, but only when the
user decides to do so (see Updating DDE Input Links).

N.B. In the case of variables and series, the elements Starting Value must be included in the array of
linked values. For example, if a DDE link is established from the first three cells of a spreadsheet to
a DS Lab series, the first cell will contain the Starting Value, the second the value for the first
step and the third the value for the second step.

Exporting Data from a Server Application to a DS Lab Element
Requesting Data from DS Lab with the DDERequest Function
Setting Up a Permanent Import Link from Another Application

Exporting Data from a Server Application to a DS Lab Element

You can export a value from any Windows application to a DS Lab element by specifying the following
DDE arguments:

- Application = "DS Lab"

- Topic = "name of an open model"
- Item = "name of the element in the model, with step notation if required"
With this technique, only one value at a time can be sent, and only to places where calculation is not
involved; in other words, to series and to the starting (step 0) value or a past step of a variable. (Here past
step means a step earlier than Simulation Start for variables where the Always Calculate option is not
selected).

For example, to send the value of the A1 cell of the Excel worksheet SHEET1.XLS to the third step of the
COSTS variable in the DS Lab model MODEL1, the following Excel macro can be used:

INITIATE("DSLab";"MODEL1.LAB")
POKE(Channel;"COSTS[3]";'SHEET1.XLS'!A1)
TERMINATE(Channel)
RETURN()

where Channel is the name given to the cell containing the first instruction.

Requesting Data from DS Lab with the DDERequest Function

This technique is the opposite of the previous one: DS Lab requests a value from another Windows
application. The DDERequest function can only be used in the script of a variable, so values can be
imported only by variables.

For example, to import the value of the top left cell of the Excel worksheet SHEET1.XLS to a DS Lab
variable, the following script could be used:
DDERequest("Excel";"SHEET1.XLS";"R1C1")

Setting Up a Permanent Import Link from Another Application

When we speak of DDE links between applications, we usually mean this kind of link. In DS Lab, DDE
links can be set up from the dialog boxes of both series and variables. All steps of a series can be linked.
In the case of a variable, the starting (step 0) value and all past steps can be linked. (Here past step
means a step earlier than Simulation Start for variables where the Always Calculate option is not
selected).

The simplest procedure is to use the Paste Link button, but the link can also be typed in manually in the
DDE edit box.

- To use the Paste Link button:

1. Run the application from which the data is to be imported.
2. Copy the required zone (a series of values).
3. Enter DS Lab.
4. Double-click on the variable to which the values are to be linked.
5. Click the Paste Link button.
6. Click the Update button to import the data.

As an example, if a DDE link with the first twelve cells of the Excel worksheet SHEET1.XLS is set up, the
following link will be obtained:

Excel|SHEET1.XLS!R1C1:R1C12

Exporting Data with DDE (DDE Output Procedures)

There are three ways of exporting data from DS Lab to other applications using DDE:

1. Requesting data from a client application by a Request function (in Excel, for example, Request); this
makes a Cold Link from the client application to DS Lab.

2. Exporting the data from DS Lab with the DDEPoke function. This too makes a Cold Link from the
client application to DS Lab.

3. Using the Copy, Copy Link Total and Copy Link Current commands from the Edit menu. In this
case a permanent Hot Link is established with the client application.

Requesting Data from DS Lab from Within a Client Application
Exporting Data from DS Lab Using the DDEPoke Function
Setting Up a Permanent Export Link to Another Application

Requesting Data from DS Lab from Within a Client Application

Any Windows application can import the value of a DS Lab element by specifying the following DDE
arguments:

Application = "DSLab";

Topic = "name of an open modelI"
Item = "name of an element in the model, with step notation if required".

With this technique, only one value of a variable or a series (including the starting value of a variable) can
be imported at one time from DS Lab. For example, to import the value of the Revenue variable for the
current step in the MODEL1 model into Visual Basic, the following program could be used:

Sub Form_Clic ()
'LinkRequest Method Example

Const NONE = 0, Hot = 1, Cold = 2
If Text1.LinkMode = NONE Then

Text1.LinkTopic = "dslab|model1"
Text1.LinkItem = "Revenue"
Text1.LinkMode = COLD
Text1.LinkRequest

Else
Text1.LinkRequest

End If
End Sub

Exporting Data from DS Lab Using the DDEPoke Function

This technique is the opposite of the previous one: DS Lab sends a value to another Windows application.
Since the DDEPoke function can only be used in the script of a variable, only the values of variables can
be exported in this way. For example, to export the value of the Revenue variable at the current step from
a DS Lab model to the first cell in the top left corner of the Excel worksheet SHEET1.XLS, the following
script might be used:

DDEPoke("Excel";"SHEET1.XLS";"R1C1";REVENUE)

Setting Up a Permanent Export Link to Another Application

When we speak of DDE links between applications, we usually mean this kind of link. As well as the
standard Windows DDE functions, DS Lab includes two additional options Copy Link Total and Copy
Link Current in the Edit menu which provide a very simple way to make DDE links for all the step
values of one or more elements (Link Total), or for a single step value of one or more elements (Link
Current).

There are, therefore, two possible procedures. The first is the standard Windows method using the Copy
command. This can export values from only one element at a time. The procedure is as follows:

1. Select the desired element (one only).
2. Open the Edit menu, or click the right mouse button, and choose Copy.
3. Enter the application with which you want to make the link.
4. Place the cursor where the data is to appear.
5. From the Edit menu, choose Paste Link.

The second procedure, using the Copy Link Total and Copy Link Current commands, is as follows:

1. From the Options menu, choose Copy Link Format... to define the format of the link (this will be
different for each Windows application). The default format is that used by Excel.

2. Select the element(s) to link.
3. Open the Edit menu, or click the right mouse button, and choose Copy Link Total or Copy Link

Current, depending on whether you wish to export the values of all the steps, or only those of the
current step.

4. Enter the application with which you want to make the link.
5. Move to the zone where the data is to appear.
6. Open the Edit menu, or click the right mouse button, and choose Paste (or press SHIFT+INS).

Updating DDE Input Links

To update the data input via DDE Hot Links from other applications, there are two possible procedures:

- Enter the dialog box of each element you want to update by double-clicking on it, and choose the
Update button.

OR:

- Click the DDE tool , or from the Simulation menu, choose Update DDE Links... .
This operation accesses a dialog box in which you can select one or more elements to be updated
simultaneously.

Common Questions and Answers

When I ask for a report or a listing of the current step values, how do I change the orientation of
the steps and elements so that the steps run along the top or down the side?
Choose the Workspace... command in the Options menu. At the bottom of the dialog box there is a
section entitled Default Settings for Copy where you may select the orientation, the current step values
listing and the format for copying to other Windows applications.

There are so many ways to import and export data in DS Lab; what is the best way?
A. Importing: To import data you will use only once and never update, use the Copy command in the
Edit menu in the source application and the Paste button in the dialog box of the receiving DS Lab
element.

If the data will be updated, use the Copy command in the Edit menu of the source application and the
Paste Link button in the dialog box of the receiving DS Lab element. Remember to use the Update button
to update the link from within the element dialog box, or the Update DDE Links... command in the
Simulation menu to update all or selected links.

Please note that when using the Paste Link command to import a series of values into a DS Lab Series
element, the first value in the series is placed in the Starting Value field, not the First Step field. This
means that the user must include a zero as the first value in the series to be pasted if the Starting Value
is to be zero.

To import data under script control (for example, when the import depends upon the result of a
calculation), use the DS Lab Request function from within a script.

B. Exporting: To export calculated value(s) which you will not be updating, use the Excel tool when
Excel is the destination application. If Excel is not the destination application, use Copy from the Edit
menu in DS Lab and Paste from the Edit menu in the destination Windows application. (The actual
command in the destination application may not be Edit|Paste; please refer to the documentation of that
application for instructions on how to paste from the Windows clipboard.)

To export calculated value(s) which you will frequently update, use the DS Lab Link with Excel...
command in the Simulation menu when the destination application is Excel. If Excel is not the destination
application, use Edit|Copy from DS Lab and Edit|Paste Special|Link or Edit|Paste Link in the
destination Windows application. (The actual command in the destination application may not be Edit|
Paste Special|Link or Edit|Paste Link; please refer to the documentation of that application for
instructions on how to paste from the Windows clipboard.) Be aware that not all Windows programs
support DDE links from other applications

To establish Hot Links to another application (so that the values are updated automatically), use the Copy
Link Current or Copy Link Total commands from the Edit menu to copy the values from DS Lab. In the
destination application, use the Edit|Paste (not Paste Link) command to paste the DDE links.

Note: DS Lab must be instructed as to the format of the Hot Link required by the destination application.
Each application requires its own format. The default format is set to Excel. If the destination application is
not Excel, you must specify the link format in the Options|Copy Link Format... dialog box. Please refer
to the documentation of that application for specifications on the format to use.

The difference between Copy Link xxx/Paste and Copy/Paste Link is that Copy Link Current and
Copy Link Total create an individual DDE link for each step of each element. This is beneficial when the
data will be split up and moved around within the destination application. Using Edit|Copy from DS Lab
and Edit|Paste Link in the destination application creates a single DDE link for an array, which can not
be broken up.

If you want to update a value in another application under program control of a script, use the DS Lab
Poke function.

Remember to use the Workspace command in the Options menu to choose the orientation of the steps
and elements so that the steps run along the top, or down the side. At the bottom of the dialog box there
is a section entitled Default Settings for Copy: click on the option button corresponding to the orientation
desired. You may also elect to copy the current step values, step headings and element names to the
destination Windows application.

Please refer to the DS Lab manual for more details on all the functions described above.

In applications other than DS Lab, the actual commands for Copy, Paste, or Paste Link might differ
slightly. Please refer to the applications manual for more details.

I have copied data into another application and the step headings are different from what I saw in
DS Lab.
If step headings are time based (months for example) they will be copied over in the format defined by the
International section of the Windows Control Panel.

I tried to copy some elements in DS Lab and paste them into another application without success,
why?
The DS Lab Edit/Copy and Edit/Paste link in another application will not work if the first selected element
is a comment. Re-select the DS Lab elements axcluding any comment elements, then copy and paste.

Why can I not copy link into Windows write?
Windows Write accepts links as graphical images. DS Lab supports only alphanumeric links to other
applications.

Why does the Excel tool not work?
The Excel directory must be included in the PATH statement of your computers AUTOEXEC.BAT file. The
Excel tool will not work if Excel is iconized; use Alt-tab to switch between applications. The Excel tool will
not work if the user has an autoexec sheet in the excel statup directory or an autoexec macro in Sheet1.
This is because Excel ignores the command sent by DS Lab and executes the macros. Remove the
autoexec macro and/or remove the autoexec sheet from the startup directory when working with both
applications.

When I use the Export to Excel tool Excel opens but nothing else happens, Why?
Answer: In Excel, use the Options|Workspace... command to open a dialog box. At the bottom of this
dialog box there is a set of check boxes; one of them says "Ignore remote requests." Make sure that this
box is NOT selected. It should NOT have an "X" in it.

I have used the Simulation/Link with Excel command but nothing happens in Excel, why?
You must first recalculate the model in order to cause the values to be exported to Excel. Simulation Link
with Excel will not work if Excel is iconized.

Why does the Link with Excel tool not display any Excel worksheets?
You need to open Excel and have the destination sheets open.

Why does the Link with Excel Elements list box not display any tables?
DS Lab cannot link a table to Excel since it does not know which of the values in the table you want to link
to Excel. If you want to link a value from the table to Excel, create a Variable which selects one of the
values from the table based on any criteria you choose, and then link that variable to Excel.

When I try to copy large models I see an error message in the destination application about the
whole file not being copied. Why?
There can be one of two reasons. The clipboard is limited to 64K of data; this is a Windows limitation. For
Excel, you can circumvent this limit by using the Simulation|Link with Excel... command.

You may also have a problem in the destination application if you place the step headings in columns and
the number of steps is greater than the number of columns available in the receiving application. Most
spreadsheets are limited to 256 columns. A thirty year mortgage has 360 monthly payments, so it is easy
to develop DS Lab models which have more steps than spreadsheets have columns. Try putting the step
headings in rows, rather than columns.

Sometimes it seems to take for ever to paste into another application. Why?
Be patient, sometimes users dont realize that they are moving huge amounts of data between two
applications. If it really does take forever, the problem may be in the receiving application. Many
applications can handle only a limited number ofDDE links for example. This limit varies from application
to application. You may need to contact the Technical Support department of the application in question to
find out what the limit is, since most manuals do not document this.

I created DDE links into a spreadsheet and included the step heading and element names. When I
changed the Element names in DS Lab they did not change in the spreadsheet, nor did the values
change. Why?
Only the values have a live DDE link, if the titles or the step units are changed these changes cannot be
carried over by DDE links (these must remain as a fixed reference for the DDE links to work). If you
change the Element names the values cannot be updated because the DDE links refer to an element
name which no longer exists.

How do I print a report of Values in DS Lab if I dont have a spreadsheet to export to?
You can copy values from DS Lab to Windows word processors as well as spreadsheets. We will give you
an example of how to export to the Windows Write word processor which comes bundled with every
Windows package. It can usually be found in your Accessories program group. If you cannot find it on
your system refer to your Windows manual for loading and using this word processor. Most of the
instructions given will apply to any Windows word processor such as Word for Windows, with
modifications appropriate to the commands actually available. Make sure Windows Write (or your word
processor) is open before starting.

In DS Lab, use the Workspace... command in the Options menu to open the Workspace Setup dialog
box. At the bottom of the box you will find a section titled Default Settings for Copy. Select whether you
want the step headings to be in columns or in rows. Be sure to consider the page orientation of the word
processor and how the data will fit when you make your choices. Generally speaking, if you have few
elements, and many steps, place the step headings in rows; if you have many elements and few steps,
place the step headings in columns. You may also choose to include step headings, element names and
initial values by clicking the option. Choose the OK button after you have made your selection.

Now you have two options. You can copy directly to the word processor or you can first preview what you
copy by using the DS Lab report function. To preview and then export the values for the current step, click
the Current Step report tool, use the mouse to select the cells you wish to copy, then use the Edit|Copy
command. Switch to Windows Write and use the Edit|Paste command.

To preview then export selected elements for multiple steps, use the Selection arrow to select the
elements you wish to copy, click the Report tool, use the mouse to highlight the cells you wish to copy,
then use the Edit|Copy command. Switch to Windows Write and use the Edit|Paste command. In
Windows Write, click on the Document|Ruler On command if the ruler is not displayed and use the tabs
to align the data you have copied. In Word for Windows, you can also use tabs or highlight the values you
have copied over and use the Table|Convert Text to Table... command to very quickly arrange the data

in a Word for Windows table.

In both these cases, using the report function first will preserve the formatting used in DS Lab. If step
headings are time based (months for example) they will be copied over in the format defined by the
International section of the Windows control panel.

Another way to copy data is to do so without previewing through the Report facility of DS Lab. This has
the advantage of allowing you to set up hot links using the Paste Link command of the receiving word
processor. However, formatting is not preserved.

I want to use some of the more complex functions. What is the best way to use local variables in a
script?
Opening some of the sample files will show you how local variables are used in scripts. In general, the
best way to write a script using multi-argument functions is to choose the Script Edit button from the
Variable Dialog box. This will enlarge the Script edit box. From the List menu, choose the
Functions/Instructions command. From the list box presented, choose the function you want to use.
One click will show you the complete function with its syntax and an explanation of what it does. A double
click will copy that function into the script where the cursor is located.

Once the function is in the Script edit box, use the Edit|Copy and Edit|Paste commands to copy each
argument to a line (one argument per line) above the function itself. Place an equal sign after each
argument then select an element or a keyword from the List|Functions... or List|Connected Elements...
commands. This will turn each argument name into a local variable and assign a value from an element
or a keyword to that local variable. Though slightly more time consuming at first, this technique reduces
the risk of syntax errors within the function, makes it very easy to read the script at a later date, and
provides for the use of the same local variable in a multi-function script.

Arguments which require either a step notation or an array notation reference cannot be represented by a
local variable, and a local variable cannot be used in array or step notation.

My model uses Step Unit Day, Month, ... and during a Paste Link operation in Excel 4 my Step
Headings appear as numbers. Why?
This is due to the fact that Excel 4 does not distinguish between dates and numbers in Paste Link. You
have to manually enter the Format Number dialog box in Excel and assign the correct date format.

Functions that reference the value of a variable at a future step do not give the correct answer.
Why?
This is because the values of the variable in future steps have not yet been calculated. The value will be
correct for the last step of the model, once the model has been calculated. It is particularly important to
bear this in mind when using functions such as the PresentValue and FutureValue financial functions,
when the values are to be calculated as part of a variable. Such scripts can still be useful, for example
when calculating the future value of payments made to date, since the value for future steps is assumed
to be zero.

When zooming out, lines and text do not shrink proportionately, resulting in lines overlapping
text. Why, and will this affect the printed output?
This is a limitation caused by Windows, Windows display drivers, and the way they handle text on screen.
At very small magnifications what you see on screen will not correspond exactly to what will be printed.
Experiment a few times to see how your particular screen driver and your particular print driver
correspond.

I want to select multiple elements that are not contiguous. How do I do this?
Hold down the SHIFT key while you select the elements with the mouse.

I have many connections coming into one variable. How do I select a particular arrow to move it or
delete it when they overlap?
Without moving the mouse, keep clicking until the connection you want changes from a solid line to a
dotted line.

Why does a Variable display NC in front of the value for certain steps?
NC means Not Calculated. This shows up in Variables with the Always Calculate option disabled for
those steps prior to the Simulation Start step. To edit the values in those steps, use the Edit Past
Steps... command in the Model menu or the corresponding tool. This is an excellent way to place actual
data in a forecast model for past periods, for which the actual value is known.

Why are the columns available in a Table element not the same number as the number of steps?
Table elements are not the equivalent of stacked series elements. Tables are meant to be used when a
reference table is required which is disconnected from the steps in a model.

Why can I not paste a selected range of cells into a series from my spreadsheet when I am in Edit|
Series... mode?
This happens when the range selected is a column of values instead of a row of values. Copy and
transpose the range of values from a column into a row and then redo the copy paste command.

Can I do something to speed up recalculations?
The simplest thing to do is to use the Model Setup... command in the Options menu and make sure that
the Show Values during Simulation check box is disabled. This will prevent DS Lab from updating the
values on screen after every step is calculated and significantly speed the recalculation. The recalculation
speed can be even further accelerated up by using the Toolbar check box in the Options|Workspace...
dialog box to eliminate the horizontal tool bar from the display and thus prevent DS Lab from updating the
current step box after every step is calculated.

Purchasing a math co-processor if your system does not have one will have a varying effect, depending
on the complexity of the scripts you have and the functions you use. Generally speaking, the complex
functions that are slowest to recalculate are the ones that would benefit most from a math co-processor.

